γ-Secretase: A multifaceted regulator of angiogenesis: Angiogenesis Review Series

Michael E. Boulton, Jun Cai, Maria B. Grant

Research output: Contribution to journalArticle

46 Scopus citations

Abstract

Introduction Regulated intramembrane proteolysis γ-Secretase Structure Receptor cleavage Is there more to γ-Secretase than regulated intramembrane proteolysis? Receptor translocation Presenilin-binding proteins Phosphorylation Role of γ-Secretase in angiogenesis Notch Vascular endothelial growth factor receptor-1 (VEGFR-1) Insulin-like growth factor-I receptor (IGF-1R) ErbB4 Cadherins Amyloid precursor protein (APP) Other substrates γ-Secretase as a therapeutic target γ-Secretase, what next? Abstract Physiological angiogenesis is essential for development, homeostasis and tissue repair but pathological neovascularization is a major feature of tumours, rheumatoid arthritis and ocular complications. Studies over the last decade have identified γ-secretase, a presenilin-dependent protease, as a key regulator of angiogenesis through: (i) regulated intramembrane proteolysis and transmembrane cleavage of receptors (e.g. VEGFR-1, Notch, ErbB-4, IGFI-R) followed by translocation of the intracellular domain to the nucleus, (ii) translocation of full length membrane-bound receptors to the nucleus (VEGFR-1), (iii) phosphorylation of membrane bound proteins (VEGFR-1 and ErbB-4), (iv) modulation of adherens junctions (cadherin) and regulation of permeability and (v) cleavage of amyloid precursor protein to amyloid-β which is able to regulate the angiogenic process. The γ-secretase-induced translocation of receptors to the nucleus provides an alternative intracellular signalling pathway, which acts as a potent regulator of transcription. γ-secretase is a complex composed of four different integral proteins (presenilin, nicastrin, Aph-1 and Pen-2), which determine the stability, substrate binding, substrate specificity and proteolytic activity of γ-secretase. This seeming complexity allows numerous possibilities for the development of targeted γ-secretase agonists-antagonists, which can specifically regulate the angiogenic process. This review will consider the structure and function of γ-secretase, the growing evidence for its role in angiogenesis and the substrates involved, γ-secretase as a therapeutic target and future challenges in this area.

Original languageEnglish (US)
Pages (from-to)781-795
Number of pages15
JournalJournal of Cellular and Molecular Medicine
Volume12
Issue number3
DOIs
StatePublished - Jun 1 2008

    Fingerprint

Keywords

  • Amyloid
  • Angiogenesis
  • Notch
  • Presenilin
  • Receptor translocation
  • VEGFR-1
  • γ-secretase

ASJC Scopus subject areas

  • Molecular Medicine
  • Cell Biology

Cite this