6-Substituted 2,4-diamino-5-methylpyrido[2,3-d]pyrimidines as inhibitors of dihydrofolate reductases from Pneumocystis carinii and Toxoplasma gondii and as antitumor agents

Aleem Gangjee, Anil Vasudevan, Sherry Queener, Roy L. Kisliuk

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

The synthesis and biological activity of 15 6-substituted 2,4-diamino-5-methylpyrido[2,3-d]-pyrimidines are reported. These compounds were synthesized in improved yields by modifications of procedures previously reported by us. Specifically, dimethoxyphenyl-substituted compounds with H and CH3 at the N-10 position and trimethoxyphenyl-substituted compounds with N-10 ethyl, isopropyl, and propargyl moieties were synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii, Toxoplasma gondii, and rat liver, and selected analogues were evaluated as inhibitors of the growth of T. gondii and tumor cells in culture. All the compounds showed increased selectivity (vs rat liver DHFR) for T. gondii DHFR compared to trimetrexate. In general, for the trimethoxy-substituted analogues, increasing the size of the N-10 substituent from a methyl group to larger groups resulted in a decrease in selectivity and potency for both P. carinii and T. gondii DHFR. For the dimethoxy-substituted analogues, N-10 methylation in general decreased potency but increased selectivity for T. gondii DHFR. In an attempt to improve the cell penetration of these analogues, the N-10 naphthyl-substituted analogues were also synthesized. These analogues displayed excellent cell penetration and inhibition of T. gondii cells in culture. Further, these analogues were potent inhibitors of the growth of tumor cells in the preclinical in-vitro screening program of the National Cancer Institute with IC50s in the nanomolar range.

Original languageEnglish
Pages (from-to)1778-1785
Number of pages8
JournalJournal of Medicinal Chemistry
Volume38
Issue number10
StatePublished - 1995

Fingerprint

Folic Acid Antagonists
Pneumocystis carinii
Pyrimidines
Tetrahydrofolate Dehydrogenase
Toxoplasma
Antineoplastic Agents
Growth Inhibitors
Liver
Rats
Tumors
Trimetrexate
Cells
Methylation
Cell Culture Techniques
Bioactivity
Cell culture
Screening
National Cancer Institute (U.S.)
Neoplasms

ASJC Scopus subject areas

  • Organic Chemistry

Cite this

@article{b310cde7ca0b436b952774fffd0d043d,
title = "6-Substituted 2,4-diamino-5-methylpyrido[2,3-d]pyrimidines as inhibitors of dihydrofolate reductases from Pneumocystis carinii and Toxoplasma gondii and as antitumor agents",
abstract = "The synthesis and biological activity of 15 6-substituted 2,4-diamino-5-methylpyrido[2,3-d]-pyrimidines are reported. These compounds were synthesized in improved yields by modifications of procedures previously reported by us. Specifically, dimethoxyphenyl-substituted compounds with H and CH3 at the N-10 position and trimethoxyphenyl-substituted compounds with N-10 ethyl, isopropyl, and propargyl moieties were synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii, Toxoplasma gondii, and rat liver, and selected analogues were evaluated as inhibitors of the growth of T. gondii and tumor cells in culture. All the compounds showed increased selectivity (vs rat liver DHFR) for T. gondii DHFR compared to trimetrexate. In general, for the trimethoxy-substituted analogues, increasing the size of the N-10 substituent from a methyl group to larger groups resulted in a decrease in selectivity and potency for both P. carinii and T. gondii DHFR. For the dimethoxy-substituted analogues, N-10 methylation in general decreased potency but increased selectivity for T. gondii DHFR. In an attempt to improve the cell penetration of these analogues, the N-10 naphthyl-substituted analogues were also synthesized. These analogues displayed excellent cell penetration and inhibition of T. gondii cells in culture. Further, these analogues were potent inhibitors of the growth of tumor cells in the preclinical in-vitro screening program of the National Cancer Institute with IC50s in the nanomolar range.",
author = "Aleem Gangjee and Anil Vasudevan and Sherry Queener and Kisliuk, {Roy L.}",
year = "1995",
language = "English",
volume = "38",
pages = "1778--1785",
journal = "Journal of Medicinal Chemistry",
issn = "0022-2623",
publisher = "American Chemical Society",
number = "10",

}

TY - JOUR

T1 - 6-Substituted 2,4-diamino-5-methylpyrido[2,3-d]pyrimidines as inhibitors of dihydrofolate reductases from Pneumocystis carinii and Toxoplasma gondii and as antitumor agents

AU - Gangjee, Aleem

AU - Vasudevan, Anil

AU - Queener, Sherry

AU - Kisliuk, Roy L.

PY - 1995

Y1 - 1995

N2 - The synthesis and biological activity of 15 6-substituted 2,4-diamino-5-methylpyrido[2,3-d]-pyrimidines are reported. These compounds were synthesized in improved yields by modifications of procedures previously reported by us. Specifically, dimethoxyphenyl-substituted compounds with H and CH3 at the N-10 position and trimethoxyphenyl-substituted compounds with N-10 ethyl, isopropyl, and propargyl moieties were synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii, Toxoplasma gondii, and rat liver, and selected analogues were evaluated as inhibitors of the growth of T. gondii and tumor cells in culture. All the compounds showed increased selectivity (vs rat liver DHFR) for T. gondii DHFR compared to trimetrexate. In general, for the trimethoxy-substituted analogues, increasing the size of the N-10 substituent from a methyl group to larger groups resulted in a decrease in selectivity and potency for both P. carinii and T. gondii DHFR. For the dimethoxy-substituted analogues, N-10 methylation in general decreased potency but increased selectivity for T. gondii DHFR. In an attempt to improve the cell penetration of these analogues, the N-10 naphthyl-substituted analogues were also synthesized. These analogues displayed excellent cell penetration and inhibition of T. gondii cells in culture. Further, these analogues were potent inhibitors of the growth of tumor cells in the preclinical in-vitro screening program of the National Cancer Institute with IC50s in the nanomolar range.

AB - The synthesis and biological activity of 15 6-substituted 2,4-diamino-5-methylpyrido[2,3-d]-pyrimidines are reported. These compounds were synthesized in improved yields by modifications of procedures previously reported by us. Specifically, dimethoxyphenyl-substituted compounds with H and CH3 at the N-10 position and trimethoxyphenyl-substituted compounds with N-10 ethyl, isopropyl, and propargyl moieties were synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii, Toxoplasma gondii, and rat liver, and selected analogues were evaluated as inhibitors of the growth of T. gondii and tumor cells in culture. All the compounds showed increased selectivity (vs rat liver DHFR) for T. gondii DHFR compared to trimetrexate. In general, for the trimethoxy-substituted analogues, increasing the size of the N-10 substituent from a methyl group to larger groups resulted in a decrease in selectivity and potency for both P. carinii and T. gondii DHFR. For the dimethoxy-substituted analogues, N-10 methylation in general decreased potency but increased selectivity for T. gondii DHFR. In an attempt to improve the cell penetration of these analogues, the N-10 naphthyl-substituted analogues were also synthesized. These analogues displayed excellent cell penetration and inhibition of T. gondii cells in culture. Further, these analogues were potent inhibitors of the growth of tumor cells in the preclinical in-vitro screening program of the National Cancer Institute with IC50s in the nanomolar range.

UR - http://www.scopus.com/inward/record.url?scp=0029042466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029042466&partnerID=8YFLogxK

M3 - Article

C2 - 7752201

AN - SCOPUS:0029042466

VL - 38

SP - 1778

EP - 1785

JO - Journal of Medicinal Chemistry

JF - Journal of Medicinal Chemistry

SN - 0022-2623

IS - 10

ER -