Find Publications

Search in all content

Filters for Publications

Search concepts
Selected Filters

Publication Year

  • 2020
  • 2019
  • 2018
  • 2017
  • 2016

Author

  • Andrew Saykin

MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties

Chopra, N., Wang, R., Maloney, B., Nho, K., Beck, J. S., Pourshafie, N., Niculescu, A., Saykin, A. J., Rinaldi, C., Counts, S. E. & Lahiri, D. K., 2020, (Accepted/In press) In : Molecular Psychiatry.

Research output: Contribution to journalArticle

Open Access
3 Scopus citations

Methylphenidate and memory and attention adaptation training for persistent cognitive symptoms after traumatic brain injury: A randomized, placebo-controlled trial

McDonald, B. C., Flashman, L. A., Arciniegas, D. B., Ferguson, R. J., Xing, L., Harezlak, J., Sprehn, G. C., Hammond, F. M., Maerlender, A. C., Kruck, C. L., Gillock, K. L., Frey, K., Wall, R. N., Saykin, A. J. & McAllister, T. W., Aug 1 2017, In : Neuropsychopharmacology. 42, 9, p. 1766-1775 10 p.

Research output: Contribution to journalArticle

22 Scopus citations

Metabolic network failures in Alzheimer's disease: A biochemical road map

Alzheimer's Disease Neuroimaging Initiative and the Alzheimer Disease Metabolomics Consortium, Sep 2017, In : Alzheimer's and Dementia. 13, 9, p. 965-984 20 p.

Research output: Contribution to journalArticle

81 Scopus citations

Memory concerns in the early Alzheimer's disease prodrome: Regional association with tau deposition

Alzheimer's Disease Neuroimaging Initiative, 2018, In : Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. 10, p. 322-331 10 p.

Research output: Contribution to journalArticle

8 Scopus citations

Mapping longitudinal scientific progress, collaboration and impact of the Alzheimer’s disease neuroimaging initiative

Alzheimer’s Disease Neuroimaging Initiative, Nov 2017, In : PloS one. 12, 11, e0186095.

Research output: Contribution to journalArticle

5 Scopus citations

Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease

Huang, M., Yang, W., Feng, Q., Chen, W., Weiner, M. W., Aisen, P., Petersen, R., Jack, C. R., Jagust, W., Trojanowki, J. Q., Toga, A. W., Beckett, L., Green, R. C., Saykin, A. J., Morris, J. C., Shaw, L. M., Kaye, J., Quinn, J., Silbert, L., Lind, B. & 219 others, Carter, R., Dolen, S., Schneider, L. S., Pawluczyk, S., Beccera, M., Teodoro, L., Spann, B. M., Brewer, J., Vanderswag, H., Fleisher, A., Heidebrink, J. L., Lord, J. L., Mason, S. S., Albers, C. S., Knopman, D., Johnson, K., Doody, R. S., Villanueva-Meyer, J., Chowdhury, M., Rountree, S., Dang, M., Stern, Y., Honig, L. S., Bell, K. L., Ances, B., Carroll, M., Creech, M. L., Franklin, E., Mintun, M. A., Schneider, S., Oliver, A., Marson, D., Griffith, R., Clark, D., Geldmacher, D., Brockington, J., Roberson, E., Love, M. N., Grossman, H., Mitsis, E., Shah, R. C., DeToledo-Morrell, L., Duara, R., Varon, D., Greig, M. T., Roberts, P., Albert, M., Onyike, C., D'Agostino, D., Kielb, S., Galvin, J. E., Cerbone, B., Michel, C. A., Pogorelec, D. M., Rusinek, H., De Leon, M. J., Glodzik, L., De Santi, S., Murali Doraiswamy, P., Petrella, J. R., Borges-Neto, S., Wong, T. Z., Coleman, E., Smith, C. D., Jicha, G., Hardy, P., Sinha, P., Oates, E., Conrad, G., Porsteinsson, A. P., Goldstein, B. S., Martin, K., Makino, K. M., Saleem Ismail, M., Brand, C., Mulnard, R. A., Thai, G., Mc-Adams-Ortiz, C., Womack, K., Mathews, D., Quiceno, M., Levey, A. I., Lah, J. J., Cellar, J. S., Burns, J. M., Swerdlow, R. H., Brooks, W. M., Apostolova, L., Tingus, K., Woo, E., Silverman, D. H. S., Lu, P. H., Bartzokis, G., Graff-Radford, N. R., Parfitt, F., Kendall, T., Johnson, H., Farlow, M. R., Hake, A. M., Brosch, J. R., Herring, S., Hunt, C., Van Dyck, C. H., Carson, R. E., MacAvoy, M. G., Varma, P., Chertkow, H., Bergman, H., Hosein, C., Black, S., Stefanovic, B., Caldwell, C., Hsiung, G. Y. R., Feldman, H., Mudge, B., Assaly, M., Finger, E., Pasternack, S., Rachisky, I., Trost, D., Kertesz, A., Bernick, C., Munic, D., Mesulam, M. M., Lipowski, K., Weintraub, S., Bonakdarpour, B., Kerwin, D., Wu, C. K., Johnson, N., Sadowsky, C., Villena, T., Turner, R. S., Reynolds, B., Sperling, R. A., Johnson, K. A., Marshall, G., Yesavage, J., Taylor, J. L., Lane, B., Rosen, A., Tinklenberg, J., Sabbagh, M. N., Belden, C. M., Jacobson, S. A., Sirrel, S. A., Kowall, N., Killiany, R., Budson, A. E., Norbash, A., Lynn Johnson, P., Obisesan, T. O., Wolday, S., Allard, J., Lerner, A., Ogrocki, P., Tatsuoka, C., Fatica, P., Maillard, P., Olichney, J., DeCarli, C., Carmichael, O., Kittur, S., Borrie, M., Lee, T. Y., Bartha, R., Johnson, S., Asthana, S., Carlsson, C. M., Potkin, S. G., Preda, A., Nguyen, D., Tariot, P., Burke, A., Trncic, N., Reeder, S., Bates, V., Capote, H., Rainka, M., Scharre, D. W., Kataki, M., Adeli, A., Zimmerman, E. A., Celmins, D., Brown, A. D., Pearlson, G. D., Blank, K., Anderson, K., Flashman, L. A., Seltzer, M., Hynes, M. L., Santulli, R. B., Sink, K. M., Gordineer, L., Williamson, J. D., Garg, P., Watkins, F., Ott, B. R., Querfurth, H., Tremont, G., Salloway, S., Malloy, P., Correia, S., Rosen, H. J., Miller, B. L., Perry, D., Mintzer, J., Spicer, K., Bachman, D., Pomara, N., Hernando, R., Sarrael, A., Relkin, N., Chaing, G., Lin, M., Ravdin, L., Smith, A., Raj, B. A. & Fargher, K., Jan 12 2017, In : Scientific reports. 7, 39880.

Research output: Contribution to journalArticle

25 Scopus citations

Longitudinal genotype-phenotype association study via temporal structure auto-learning predictive model

The ADNI, Jan 1 2017, Research in Computational Molecular Biology - 21st Annual International Conference, RECOMB 2017, Proceedings. Sahinalp, S. C. (ed.). Springer Verlag, p. 287-302 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10229 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Longitudinal genotype-phenotype association study through temporal structure auto-learning predictive model

Wang, X., Yan, J., Yao, X., Kim, S., Nho, K., Risacher, S. L., Saykin, A. J., Shen, L. & Huang, H., Jul 2018, In : Journal of Computational Biology. 25, 7, p. 809-824 16 p.

Research output: Contribution to journalArticle

1 Scopus citations

Latent Classes of Cognitive Functioning among Depressed Older Adults Without Dementia

Morin, R. T., Insel, P., Nelson, C., Butters, M., Bickford, D., Landau, S., Saykin, A., Weiner, M. & Mackin, R. S., Jan 1 2019, In : Journal of the International Neuropsychological Society.

Research output: Contribution to journalArticle

1 Scopus citations

Knowledge-driven binning approach for rare variant association analysis: application to neuroimaging biomarkers in Alzheimer’s disease

Kim, D., Basile, A. O., Bang, L., Horgusluoglu, E., Lee, S., Ritchie, M. D., Saykin, A. J. & Nho, K., May 18 2017, In : BMC medical informatics and decision making. 17, 61.

Research output: Contribution to journalArticle

6 Scopus citations

Joint high-order multi-task feature learning to predict the progression of Alzheimer’s disease

ADNI, Jan 1 2018, Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings. Schnabel, J. A., Davatzikos, C., Alberola-López, C., Fichtinger, G. & Frangi, A. F. (eds.). Springer Verlag, p. 555-562 8 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11070 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Joint exploration and mining of memory-relevant brain anatomic and connectomic patterns via a three-way association model

Yan, J., Liu, K., Lv, H., Amico, E., Risacher, S. L., Wu, Y. C., Fang, S., Sporns, O., Saykin, A. J., Goni, J. & Shen, L., May 23 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018. IEEE Computer Society, p. 6-9 4 p. (Proceedings - International Symposium on Biomedical Imaging; vol. 2018-April).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Intrinsic brain activity changes associated with adjuvant chemotherapy in older women with breast cancer: a pilot longitudinal study

Chen, B. T., Jin, T., Patel, S. K., Ye, N., Ma, H., Wong, C. W., Rockne, R. C., Root, J. C., Saykin, A. J., Ahles, T. A., Holodny, A. I., Prakash, N., Mortimer, J., Waisman, J., Yuan, Y., Li, D., Sedrak, M. S., Vazquez, J., Katheria, V. & Dale, W., Jul 15 2019, In : Breast Cancer Research and Treatment. 176, 1, p. 181-189 9 p.

Research output: Contribution to journalArticle

4 Scopus citations

International cognition and cancer task force recommendations for neuroimaging methods in the study of cognitive impairment in non-CNS cancer patients

Deprez, S., Kesler, S. R., Saykin, A. J., Silverman, D. H. S., De Ruiter, M. B. & McDonald, B. C., Mar 1 2018, In : Journal of the National Cancer Institute. 110, 3, p. 223-231 9 p.

Research output: Contribution to journalReview article

18 Scopus citations

Interactive Machine Learning by Visualization: A Small Data Solution

Li, H., Fang, S., Mukhopadhyay, S., Saykin, A. J. & Shen, L., Jan 22 2019, Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018. Song, Y., Liu, B., Lee, K., Abe, N., Pu, C., Qiao, M., Ahmed, N., Kossmann, D., Saltz, J., Tang, J., He, J., Liu, H. & Hu, X. (eds.). Institute of Electrical and Electronics Engineers Inc., p. 3513-3521 9 p. 8621952. (Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer's disease

Nho, K., Horgusluoglu, E., Kim, S., Risacher, S. L., Kim, D., Foroud, T., Aisen, P. S., Petersen, R. C., Jack, C. R., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., Green, R. C., Toga, A. W. & Saykin, A. J., Aug 12 2016, In : BMC Medical Genomics. 9, 30.

Research output: Contribution to journalArticle

9 Scopus citations

Incidence of cognitively defined late-onset Alzheimer's dementia subgroups from a prospective cohort study

Executive Prominent Alzheimer's Disease: Genetics and Risk Factors (EPAD:GRF) Investigators, Dec 2017, In : Alzheimer's and Dementia. 13, 12, p. 1307-1316 10 p.

Research output: Contribution to journalArticle

11 Scopus citations

Implementation of subjective cognitive decline criteria in research studies

Subjective Cognitive Decline Initiative (SCD-I) Working Group, Mar 1 2017, In : Alzheimer's and Dementia. 13, 3, p. 296-311 16 p.

Research output: Contribution to journalShort survey

107 Scopus citations

Imaging genomics discovery of a new risk variant for Alzheimer's disease in the postsynaptic SHARPIN gene

Soheili-Nezhad, S., Jahanshad, N., Guelfi, S., Khosrowabadi, R., Saykin, A. J., Thompson, P. M., Beckmann, C. F., Sprooten, E. & Zarei, M., 2020, (Accepted/In press) In : Human Brain Mapping.

Research output: Contribution to journalArticle

Open Access
1 Scopus citations

Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control

The Alzheimer's Disease Neuroimaging Initiative, Nov 1 2016, In : Genetic epidemiology. 40, 7, p. 544-557 14 p.

Research output: Contribution to journalArticle

7 Scopus citations

Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: A longitudinal study of the ADNI cohort

Du, L., Liu, K., Zhu, L., Yao, X., Risacher, S. L., Guo, L., Saykin, A. J. & Shen, L., Jul 15 2019, In : Bioinformatics. 35, 14, p. i474-i483 btz320.

Research output: Contribution to journalArticle

Open Access
3 Scopus citations

Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

Hao, X., Yao, X., Yan, J., Risacher, S. L., Saykin, A. J., Zhang, D., Shen, L. & for the Alzheimer’s Disease Neuroimaging Initiative, T. A. D. N. I., Oct 1 2016, In : Neuroinformatics. 14, 4, p. 439-452 14 p.

Research output: Contribution to journalArticle

11 Scopus citations

Identifying diagnosis-specific genotype-phenotype associations via joint multitask sparse canonical correlation analysis and classification

Alzheimer’s Disease Neuroimaging Initiative, Jul 1 2020, In : Bioinformatics (Oxford, England). 36, 1, p. i371-i379

Research output: Contribution to journalArticle

Open Access

Identifying Candidate Genetic Associations with MRI-Derived AD-Related ROI via Tree-Guided Sparse Learning

Hao, X., Yao, X., Risacher, S. L., Saykin, A. J., Yu, J., Wang, H., Tan, L., Shen, L. & Zhang, D., Nov 1 2019, In : IEEE/ACM Transactions on Computational Biology and Bioinformatics. 16, 6, p. 1986-1996 11 p., 8355682.

Research output: Contribution to journalArticle

Identifying associations between brain imaging phenotypes and genetic factors via a novel structured SCCA approach

Du, L., Zhang, T., Liu, K., Yan, J., Yao, X., Risacher, S. L., Saykin, A., Han, J., Guo, L. & Shen, L., 2017, Information Processing in Medical Imaging - 25th International Conference, IPMI 2017, Proceedings. Springer Verlag, Vol. 10265 LNCS. p. 543-555 13 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10265 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Identification of functionally connected multi-omic biomarkers for Alzheimer’s disease using modularity-constrained Lasso

Xie, L., Varathan, P., Nho, K., Saykin, A. J., Salama, P. & Yan, J., Jun 2020, In : PloS one. 15, 6, e0234748.

Research output: Contribution to journalArticle

Open Access

Identification of exon skipping events associated with Alzheimer's disease in the human hippocampus

Han, S., Miller, J. E., Byun, S., Kim, D., Risacher, S. L., Saykin, A. J., Lee, Y. & Nho, K., Jan 31 2019, In : BMC Medical Genomics. 12, 13.

Research output: Contribution to journalArticle

4 Scopus citations

Identification of discriminative imaging proteomics associations in Alzheimer’s disease via a novel sparse correlation model

Alzheimer's Disease Neuroimaging Initiative, Jan 1 2017, In : Pacific Symposium on Biocomputing. 0, 212679, p. 94-104 11 p.

Research output: Contribution to journalConference article

Open Access
3 Scopus citations

Identification of associations between genotypes and longitudinal phenotypes via temporally-constrained group sparse canonical correlation analysis

Hao, X., Li, C., Yan, J., Yao, X., Risacher, S. L., Saykin, A. J., Shen, L. & Zhang, D., Jul 15 2017, In : Bioinformatics. 33, 14, p. i341-i349

Research output: Contribution to journalArticle

7 Scopus citations
13 Scopus citations

Heritability estimation of reliable connectomic features

Xie, L., Amico, E., Salama, P., Wu, Y. C., Fang, S., Sporns, O., Saykin, A. J., Goñi, J., Yan, J. & Shen, L., Jan 1 2018, Connectomics in NeuroImaging - 2nd International Workshop, CNI 2018, Held in Conjunction with MICCAI 2018, Proceedings. Wu, G., Schirmer, M. D., Chung, A. W., Rekik, I. & Munsell, B. (eds.). Springer Verlag, p. 58-66 9 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11083 LNCS).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Harnessing peripheral DNA methylation differences in the Alzheimer's Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease

Vasanthakumar, A., Davis, J. W., Idler, K., Waring, J. F., Asque, E., Riley-Gillis, B., Grosskurth, S., Srivastava, G., Kim, S., Kim, S., Nho, K., Nudelman, K. N. H., Nudelman, K. N. H., Faber, K., Sun, Y., Sun, Y., Foroud, T. M., Estrada, K., Estrada, K., Apostolova, L. G. & 3 others, Li, Q. S., Li, Q. S. & Saykin, A. J., Jun 15 2020, In : Clinical Epigenetics. 12, 1, 84.

Research output: Contribution to journalArticle

Open Access
1 Scopus citations

Gray matter density reduction associated with adjuvant chemotherapy in older women with breast cancer

Chen, B. T., Jin, T., Patel, S. K., Ye, N., Sun, C. L., Ma, H., Rockne, R. C., Root, J. C., Saykin, A. J., Ahles, T. A., Holodny, A. I., Prakash, N., Mortimer, J., Waisman, J., Yuan, Y., Li, D., Somlo, G., Vazquez, J., Levi, A., Tan, H. & 3 others, Yang, R., Katheria, V. & Hurria, A., Nov 1 2018, In : Breast Cancer Research and Treatment. 172, 2, p. 363-370 8 p.

Research output: Contribution to journalArticle

5 Scopus citations

GPU Accelerated Browser for Neuroimaging Genomics

Alzheimer’s Disease Neuroimaging Initiative, Oct 1 2018, In : Neuroinformatics. 16, 3-4, p. 393-402 10 p.

Research output: Contribution to journalArticle

Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging

Nelson, P. T., Katsumata, Y., Nho, K., Artiushin, S. C., Jicha, G. A., Wang, W. X., Abner, E. L., Saykin, A. J., Kukull, W. A., Alzheimer’s Disease Neuroimaging Initiative (ADNI), D. N. I. ADNI. & Fardo, D. W., Dec 1 2016, In : Acta Neuropathologica. 132, 6, p. 841-858 18 p.

Research output: Contribution to journalArticle

12 Scopus citations

Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort

for the Alzheimer's Disease Neuroimaging Initiative, May 30 2017, In : BMC genomics. 18, 1, 421.

Research output: Contribution to journalArticle

6 Scopus citations

Genome-wide network-assisted association and enrichment study of amyloid imaging phenotype in alzheimer’s disease

Alzheimer’s Disease Neuroimaging Initiative, Jan 1 2019, In : Current Alzheimer research. 16, 13, p. 1163-1174 12 p.

Research output: Contribution to journalArticle

1 Scopus citations

Genome-wide association study of rate of cognitive decline in Alzheimer's disease patients identifies novel genes and pathways

the Alzheimer's Disease Genetics Consortium, 2020, (Accepted/In press) In : Alzheimer's and Dementia.

Research output: Contribution to journalArticle

Genome-wide association study of prolactin levels in blood plasma and cerebrospinal fluid

for the Alzheimer's Disease Neuroimaging Initiative, Jun 29 2016, In : BMC genomics. 17, 436.

Research output: Contribution to journalArticle

2 Scopus citations

Genome-wide association study of language performance in Alzheimer's disease

The Alzheimer's Disease Neuroimaging Initiative, Sep 2017, In : Brain and Language. 172, p. 22-29 8 p.

Research output: Contribution to journalArticle

6 Scopus citations

Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging

for the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Jan 1 2018, (Accepted/In press) In : Molecular Psychiatry.

Research output: Contribution to journalArticle

4 Scopus citations

Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers

Alzheimer’s Disease Neuroimaging Initiative (ADNI) & The Alzheimer Disease Genetic Consortium (ADGC), May 1 2017, In : Acta Neuropathologica. 133, 5, p. 839-856 18 p.

Research output: Contribution to journalArticle

38 Scopus citations

Genome-wide association and interaction studies of CSF T-tau/Aβ42 ratio in ADNI cohort

Li, J., Zhang, Q., Chen, F., Meng, X., Liu, W., Chen, D., Yan, J., Kim, S., Wang, L., Feng, W., Saykin, A. J., Liang, H. & Shen, L., Sep 2017, In : Neurobiology of Aging. 57, p. 247.e1-247.e8

Research output: Contribution to journalArticle

11 Scopus citations

Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways

Alzheimer’s Disease Neuroimaging Initiative (ADNI), Dec 1 2019, In : Scientific reports. 9, 1, 14498.

Research output: Contribution to journalArticle

Open Access
2 Scopus citations

Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing

Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimer’s Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), & Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES), Mar 1 2019, In : Nature genetics. 51, 3, p. 414-430 17 p.

Research output: Contribution to journalArticle

148 Scopus citations

Genetic influences on schizophrenia and subcortical brain volumes: Large-scale proof of concept

Psychosis Endophenotypes International Consortium, Feb 23 2016, In : Nature Neuroscience. 19, 3, p. 420-431 12 p.

Research output: Contribution to journalArticle

113 Scopus citations

Genetic data and cognitively defined late-onset Alzheimer’s disease subgroups

EPAD Study Group, Investigators from ACT, Investigators from ROS, Investigators from MAP, Investigators from ADNI & Investigators from the University of Pittsburgh ADRC, Jan 1 2018, (Accepted/In press) In : Molecular Psychiatry.

Research output: Contribution to journalArticle

5 Scopus citations

Genetic architecture of subcortical brain structures in 38,851 individuals

Satizabal, C. L., Adams, H. H. H., Hibar, D. P., White, C. C., Knol, M. J., Stein, J. L., Scholz, M., Sargurupremraj, M., Jahanshad, N., Roshchupkin, G. V., Smith, A. V., Bis, J. C., Jian, X., Luciano, M., Hofer, E., Teumer, A., van der Lee, S. J., Yang, J., Yanek, L. R., Lee, T. V. & 269 others, Li, S., Hu, Y., Koh, J. Y., Eicher, J. D., Desrivières, S., Arias-Vasquez, A., Chauhan, G., Athanasiu, L., Rentería, M. E., Kim, S., Hoehn, D., Armstrong, N. J., Chen, Q., Holmes, A. J., den Braber, A., Kloszewska, I., Andersson, M., Espeseth, T., Grimm, O., Abramovic, L., Alhusaini, S., Milaneschi, Y., Papmeyer, M., Axelsson, T., Ehrlich, S., Roiz-Santiañez, R., Kraemer, B., Håberg, A. K., Jones, H. J., Pike, G. B., Stein, D. J., Stevens, A., Bralten, J., Vernooij, M. W., Harris, T. B., Filippi, I., Witte, A. V., Guadalupe, T., Wittfeld, K., Mosley, T. H., Becker, J. T., Doan, N. T., Hagenaars, S. P., Saba, Y., Cuellar-Partida, G., Amin, N., Hilal, S., Nho, K., Mirza-Schreiber, N., Arfanakis, K., Becker, D. M., Ames, D., Goldman, A. L., Lee, P. H., Boomsma, D. I., Lovestone, S., Giddaluru, S., Le Hellard, S., Mattheisen, M., Bohlken, M. M., Kasperaviciute, D., Schmaal, L., Lawrie, S. M., Agartz, I., Walton, E., Tordesillas-Gutierrez, D., Davies, G. E., Shin, J., Ipser, J. C., Vinke, L. N., Hoogman, M., Jia, T., Burkhardt, R., Klein, M., Crivello, F., Janowitz, D., Carmichael, O., Haukvik, U. K., Aribisala, B. S., Schmidt, H., Strike, L. T., Cheng, C. Y., Risacher, S. L., Pütz, B., Fleischman, D. A., Assareh, A. A., Mattay, V. S., Buckner, R. L., Mecocci, P., Dale, A. M., Cichon, S., Boks, M. P., Matarin, M., Penninx, B. W. J. H., Calhoun, V. D., Chakravarty, M. M., Marquand, A. F., Macare, C., Kharabian Masouleh, S., Oosterlaan, J., Amouyel, P., Hegenscheid, K., Rotter, J. I., Schork, A. J., Liewald, D. C. M., de Zubicaray, G. I., Wong, T. Y., Shen, L., Sämann, P. G., Brodaty, H., Roffman, J. L., de Geus, E. J. C., Tsolaki, M., Erk, S., van Eijk, K. R., Cavalleri, G. L., van der Wee, N. J. A., McIntosh, A. M., Gollub, R. L., Bulayeva, K. B., Bernard, M., Richards, J. S., Himali, J. J., Loeffler, M., Rommelse, N., Hoffmann, W., Westlye, L. T., Valdés Hernández, M. C., Hansell, N. K., van Erp, T. G. M., Wolf, C., Kwok, J. B. J., Vellas, B., Heinz, A., Olde Loohuis, L. M., Delanty, N., Ho, B. C., Ching, C. R. K., Shumskaya, E., Singh, B., Hofman, A., van der Meer, D., Homuth, G., Psaty, B. M., Bastin, M. E., Montgomery, G. W., Foroud, T. M., Reppermund, S., Hottenga, J. J., Simmons, A., Meyer-Lindenberg, A., Cahn, W., Whelan, C. D., van Donkelaar, M. M. J., Yang, Q., Hosten, N., Green, R. C., Thalamuthu, A., Mohnke, S., Hulshoff Pol, H. E., Lin, H., Jack, C. R., Schofield, P. R., Mühleisen, T. W., Maillard, P., Potkin, S. G., Wen, W., Fletcher, E., Toga, A. W., Gruber, O., Huentelman, M., Davey Smith, G., Launer, L. J., Nyberg, L., Jönsson, E. G., Crespo-Facorro, B., Koen, N., Greve, D. N., Uitterlinden, A. G., Weinberger, D. R., Steen, V. M., Fedko, I. O., Groenewold, N. A., Niessen, W. J., Toro, R., Tzourio, C., Longstreth, W. T., Ikram, M. K., Smoller, J. W., van Tol, M. J., Sussmann, J. E., Paus, T., Lemaître, H., Schroeter, M. L., Mazoyer, B., Andreassen, O. A., Holsboer, F., Depondt, C., Veltman, D. J., Turner, J. A., Pausova, Z., Schumann, G., van Rooij, D., Djurovic, S., Deary, I. J., McMahon, K. L., Müller-Myhsok, B., Brouwer, R. M., Soininen, H., Pandolfo, M., Wassink, T. H., Cheung, J. W., Wolfers, T., Martinot, J. L., Zwiers, M. P., Nauck, M., Melle, I., Martin, N. G., Kanai, R., Westman, E., Kahn, R. S., Sisodiya, S. M., White, T., Saremi, A., van Bokhoven, H., Brunner, H. G., Völzke, H., Wright, M. J., van ‘t Ent, D., Nöthen, M. M., Ophoff, R. A., Buitelaar, J. K., Fernández, G., Sachdev, P. S., Rietschel, M., van Haren, N. E. M., Fisher, S. E., Beiser, A. S., Francks, C., Saykin, A. J., Mather, K. A., Romanczuk-Seiferth, N., Hartman, C. A., DeStefano, A. L., Heslenfeld, D. J., Weiner, M. W., Walter, H., Hoekstra, P. J., Nyquist, P. A., Franke, B., Bennett, D. A., Grabe, H. J., Johnson, A. D., Chen, C., van Duijn, C. M., Lopez, O. L., Fornage, M., Wardlaw, J. M., Schmidt, R., DeCarli, C., De Jager, P. L., Villringer, A., Debette, S., Gudnason, V., Medland, S. E., Shulman, J. M., Thompson, P. M., Seshadri, S. & Ikram, M. A., Nov 1 2019, In : Nature genetics. 51, 11, p. 1624-1636 13 p.

Research output: Contribution to journalArticle

6 Scopus citations

Genetically elevated high-density lipoprotein cholesterol through the cholesteryl ester transfer protein gene does not associate with risk of Alzheimer's disease

International Genomics of Alzheimer's Project (IGAP), ARUK Consortium & GERAD/PERADES, CHARGE, ADGC, EADI, Jan 1 2018, In : Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. 10, p. 595-598 4 p.

Research output: Contribution to journalArticle