A dirty multi-task learning method for multi-modal brain imaging genetics

for the Alzheimer’s Disease Neuroimaging Initiative

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Brain imaging genetics is an important research topic in brain science, which combines genetic variations and brain structures or functions to uncover the genetic basis of brain disorders. Imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary but different information. Unfortunately, we do not know the extent to which phenotypic variance is shared among multiple imaging modalities, which might trace back to the complex genetic mechanism. In this study, we propose a novel dirty multi-task SCCA to analyze imaging genetics problems with multiple modalities of brain imaging quantitative traits (QTs) involved. The proposed method can not only identify the shared SNPs and QTs across multiple modalities, but also identify the modality-specific SNPs and QTs, showing a flexible capability of discovering the complex multi-SNP-multi-QT associations. Compared with the multi-view SCCA and multi-task SCCA, our method shows better canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. This demonstrates that the proposed dirty multi-task SCCA could be a meaningful and powerful alternative method in multi-modal brain imaging genetics.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer
Pages447-455
Number of pages9
ISBN (Print)9783030322502
DOIs
StatePublished - Jan 1 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: Oct 13 2019Oct 17 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11767 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
CountryChina
CityShenzhen
Period10/13/1910/17/19

    Fingerprint

Keywords

  • Brain imaging genetics
  • Multi-modal brain imaging
  • Multi-task sparse canonical correlation analysis

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

for the Alzheimer’s Disease Neuroimaging Initiative (2019). A dirty multi-task learning method for multi-modal brain imaging genetics. In D. Shen, P-T. Yap, T. Liu, T. M. Peters, A. Khan, L. H. Staib, C. Essert, & S. Zhou (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings (pp. 447-455). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11767 LNCS). Springer. https://doi.org/10.1007/978-3-030-32251-9_49