A friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors

Susan L. Kozak, Maureen E. Hoatlin, Frank E. Ferro, Manas K. Majumdar, Roy W. Geib, Mary T. Fox, David Kabat

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5%) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gpSS, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue. Our results indicate that the SFFV and BB6 env glycoproteins specifically activate EpoR; they help to define the glycoprotein properties important for its functions; and they strongly suggest that the Fv-2 leukemia control gene encodes an EpoR-associated regulatory factor.

Original languageEnglish
Pages (from-to)2611-2620
Number of pages10
JournalJournal of Virology
Volume67
Issue number5
StatePublished - May 1993

Fingerprint

Spleen Focus-Forming Viruses
Friend murine leukemia virus
Erythropoietin Receptors
erythropoietin
glycoproteins
Glycoproteins
env Gene Products
viruses
mutants
receptors
spleen
cells
env Genes
Hematopoietic Cell Growth Factors
genes
Murine leukemia virus
erythroblasts
retroviral vectors
interleukin-3
membrane glycoproteins

ASJC Scopus subject areas

  • Immunology

Cite this

A friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors. / Kozak, Susan L.; Hoatlin, Maureen E.; Ferro, Frank E.; Majumdar, Manas K.; Geib, Roy W.; Fox, Mary T.; Kabat, David.

In: Journal of Virology, Vol. 67, No. 5, 05.1993, p. 2611-2620.

Research output: Contribution to journalArticle

Kozak, Susan L. ; Hoatlin, Maureen E. ; Ferro, Frank E. ; Majumdar, Manas K. ; Geib, Roy W. ; Fox, Mary T. ; Kabat, David. / A friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors. In: Journal of Virology. 1993 ; Vol. 67, No. 5. pp. 2611-2620.
@article{22b46b32a90941739e1110a676e57938,
title = "A friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors",
abstract = "The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5{\%}) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gpSS, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue. Our results indicate that the SFFV and BB6 env glycoproteins specifically activate EpoR; they help to define the glycoprotein properties important for its functions; and they strongly suggest that the Fv-2 leukemia control gene encodes an EpoR-associated regulatory factor.",
author = "Kozak, {Susan L.} and Hoatlin, {Maureen E.} and Ferro, {Frank E.} and Majumdar, {Manas K.} and Geib, {Roy W.} and Fox, {Mary T.} and David Kabat",
year = "1993",
month = "5",
language = "English",
volume = "67",
pages = "2611--2620",
journal = "Journal of Virology",
issn = "0022-538X",
publisher = "American Society for Microbiology",
number = "5",

}

TY - JOUR

T1 - A friend virus mutant that overcomes Fv-2rr host resistance encodes a small glycoprotein that dimerizes, is processed to cell surfaces, and specifically activates erythropoietin receptors

AU - Kozak, Susan L.

AU - Hoatlin, Maureen E.

AU - Ferro, Frank E.

AU - Majumdar, Manas K.

AU - Geib, Roy W.

AU - Fox, Mary T.

AU - Kabat, David

PY - 1993/5

Y1 - 1993/5

N2 - The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5%) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gpSS, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue. Our results indicate that the SFFV and BB6 env glycoproteins specifically activate EpoR; they help to define the glycoprotein properties important for its functions; and they strongly suggest that the Fv-2 leukemia control gene encodes an EpoR-associated regulatory factor.

AB - The env gene of Friend spleen focus-forming virus (SFFV) encodes a membrane glycoprotein (gp55) that is inefficiently (3 to 5%) processed from the rough endoplasmic reticulum to form a larger dimeric plasma membrane derivative (gp55p). Moreover, the SFFV env glycoprotein associates with erythropoietin receptors (EpoR) to cause proliferation of infected erythroblasts [J.-P. Li, A. D. D'Andrea, H. F. Lodish, and D. Baltimore, Nature (London) 343:762-764, 1990]. Interestingly, the mitogenic effect of SFFV is blocked in mice homozygous for the Fv-2r resistance gene, but mutant SFFVs can overcome this resistance. Recent evidence suggested that these mutants contain partial env deletions that truncate the membrane-proximal extracellular domain of the encoded glycoproteins (M. H. Majumdar, C.-L. Cho, M. T. Fox, K. L. Eckner, S. Kozak, D. Kabat, and R. W. Geib, J. Virol. 66:3652-3660, 1992). Mutant BB6, which encodes a gp42 glycoprotein that has a large deletion in this domain, causes erythroblastosis in DBA/2 (Fv-2s) as well as in congenic D2.R (Fv-2r) mice. Analogous to gpSS, gp42 is processed inefficiently as a disulfide-bonded dimer to form cell surface gp42p. Retroviral vectors with SFFV and BB6 env genes have no effect on interleukin 3-dependent BaF3 hematopoietic cells, but they cause growth factor independency of BaF3/EpoR cells, a derivative that contains recombinant EpoR. After binding 125I-Epo to surface EpoR on these factor-independent cells and adding the covalent cross-linking reagent disuccinimidyl suberate, complexes that had immunological properties and sizes demonstrating that they consisted of 125I-Epo-gp55p and 125I-Epo-gp42p were isolated from cell lysates. Contrary to a previous report, SFFV or BB6 env glycoproteins did not promiscuously activate other members of the EpoR superfamily. Although the related env glycoproteins encoded by dualtropic murine leukemia viruses formed detectable complexes with EpoR, strong mitogenic signalling did not ensue. Our results indicate that the SFFV and BB6 env glycoproteins specifically activate EpoR; they help to define the glycoprotein properties important for its functions; and they strongly suggest that the Fv-2 leukemia control gene encodes an EpoR-associated regulatory factor.

UR - http://www.scopus.com/inward/record.url?scp=0027523442&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0027523442&partnerID=8YFLogxK

M3 - Article

C2 - 8474164

AN - SCOPUS:0027523442

VL - 67

SP - 2611

EP - 2620

JO - Journal of Virology

JF - Journal of Virology

SN - 0022-538X

IS - 5

ER -