A multiscale model of thrombus development

Zhiliang Xu, Nan Chen, Malgorzata M. Kamocka, Elliot D. Rosen, Mark Alber

Research output: Contribution to journalArticle

117 Scopus citations

Abstract

A two-dimensional multiscale model is introduced for studying formation of a thrombus (clot) in a blood vessel. It involves components for modelling viscous, incompressible blood plasma; non-activated and activated platelets; blood cells; activating chemicals; fibrinogen; and vessel walls and their interactions. The macroscale dynamics of the blood flow is described by the continuum Navier-Stokes equations. The microscale interactions between the activated platelets, the platelets and fibrinogen and the platelets and vessel wall are described through an extended stochastic discrete cellular Potts model. The model is tested for robustness with respect to fluctuations of basic parameters. Simulation results demonstrate the development of an inhomogeneous internal structure of the thrombus, which is confirmed by the preliminary experimental data. We also make predictions about different stages in thrombus development, which can be tested experimentally and suggest specific experiments. Lastly, we demonstrate that the dependence of the thrombus size on the blood flow rate in simulations is close to the one observed experimentally.

Original languageEnglish (US)
Pages (from-to)705-722
Number of pages18
JournalJournal of the Royal Society Interface
Volume5
Issue number24
DOIs
StatePublished - Jul 6 2008

    Fingerprint

Keywords

  • Blood clot
  • Cellular Potts model
  • Computational biology
  • Multiscale stochastic systems
  • Platelet aggregation and coagulation
  • Thrombus development

ASJC Scopus subject areas

  • Biophysics
  • Biotechnology
  • Bioengineering
  • Biomedical Engineering
  • Biomaterials
  • Biochemistry

Cite this