Aberrant ERG expression associates with downregulation of miR-4638-5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma

Research output: Contribution to journalArticle

Abstract

ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG− DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.

Original languageEnglish (US)
Pages (from-to)1846-1854
Number of pages9
JournalMolecular Carcinogenesis
Volume58
Issue number10
DOIs
StatePublished - Oct 1 2019

Fingerprint

Lymphoma, Large B-Cell, Diffuse
Down-Regulation
MicroRNAs
Exome
Reverse Transcriptase Polymerase Chain Reaction
Fluorescence In Situ Hybridization
Mutation
Real-Time Polymerase Chain Reaction
Genes
Catenins
Ewing's Sarcoma
Oncogene Proteins
B-Cell Lymphoma
Cell Cycle Checkpoints
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Oncogenes
Acute Myeloid Leukemia
Prostate
Lymphoma
B-Lymphocytes

Keywords

  • diffuse large B-cell lymphoma
  • ERG
  • genomic pathway
  • microRNA
  • whole exome sequencing

ASJC Scopus subject areas

  • Molecular Biology
  • Cancer Research

Cite this

@article{3ad23116ed5049de82409ba0f4be7777,
title = "Aberrant ERG expression associates with downregulation of miR-4638-5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma",
abstract = "ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30{\%} of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG− DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.",
keywords = "diffuse large B-cell lymphoma, ERG, genomic pathway, microRNA, whole exome sequencing",
author = "Shanxiang Zhang and Lin Wang and Liang Cheng",
year = "2019",
month = "10",
day = "1",
doi = "10.1002/mc.23074",
language = "English (US)",
volume = "58",
pages = "1846--1854",
journal = "Molecular Carcinogenesis",
issn = "0899-1987",
publisher = "Wiley-Liss Inc.",
number = "10",

}

TY - JOUR

T1 - Aberrant ERG expression associates with downregulation of miR-4638-5p and selected genomic alterations in a subset of diffuse large B-cell lymphoma

AU - Zhang, Shanxiang

AU - Wang, Lin

AU - Cheng, Liang

PY - 2019/10/1

Y1 - 2019/10/1

N2 - ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG− DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.

AB - ERG (avian v-ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B-cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome-wide microRNA (miRNA) expression profiling, real-time reverse-transcriptase polymerase chain reaction (RT-PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell-of-origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty-three miRNAs showed significant differential expression between ERG+ and ERG− DLBCLs. Downregulation of miR-4638-5p was confirmed by real-time RT-PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR-4638-5p. In comparison with ERG-negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B-cell receptor-mediated signaling and degradation of β-catenin. Further clinicopathological correlation and functional studies of ERG-related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.

KW - diffuse large B-cell lymphoma

KW - ERG

KW - genomic pathway

KW - microRNA

KW - whole exome sequencing

UR - http://www.scopus.com/inward/record.url?scp=85071681053&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071681053&partnerID=8YFLogxK

U2 - 10.1002/mc.23074

DO - 10.1002/mc.23074

M3 - Article

VL - 58

SP - 1846

EP - 1854

JO - Molecular Carcinogenesis

JF - Molecular Carcinogenesis

SN - 0899-1987

IS - 10

ER -