Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer

J. Li, D. Gu, S. S.Y. Lee, B. Song, S. Bandyopadhyay, S. Chen, S. F. Konieczny, T. L. Ratliff, X. Liu, J. Xie, J. X. Cheng

Research output: Contribution to journalArticlepeer-review

72 Scopus citations


Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification.

Original languageEnglish (US)
Pages (from-to)6378-6388
Number of pages11
Issue number50
StatePublished - Dec 15 2016

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cancer Research

Fingerprint Dive into the research topics of 'Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer'. Together they form a unique fingerprint.

Cite this