Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human β-globin gene in hematopoietic cells from homozygous β-thalassemic mice

Mengqun Tan, Keyun Qing, Shangzhen Zhou, Mervin C. Yoder, Arun Srivastava

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

Adeno-associated virus 2 (AAV), a nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. Here, we report successful AAV-mediated stable transduction and high-efficiency, long-term, erythroid lineage-restricted expression of a human β-globin gene in primary murine hematopoietic stem cells in vivo. Bone marrow-derived primitive Sca-1+, lin- hematopoietic stem cells from homozygous β-thalassemic mice were transduced ex vivo with a recombinant AAV vector containing a normal human β-globin gene followed by transplantation into low-dose-irradiated B6.c-kitW41/41 anemic recipient mice. Six months post-transplantation, tail-vein blood samples were analyzed by PCR amplification to document the presence of the transduced human β-globin gene sequences in the peripheral blood cells. Semi-quantitative PCR analyses revealed that the transduced human β-globin gene sequences were present at ∼ 1 copy per cell. The efficiency of the human β-globin gene expression was determined to be up to 35% compared with the murine endogenous β-globin gene by semiquantitative RT-PCR analyses. Peripheral blood samples from several positive recipient mice obtained 10 months posttransplantation were fractionated to obtain enriched populations of granulocytes, lymphocytes, and erythroid cells. PCR analyses revealed the presence of the human β-globin gene sequences in granulocytes and lymphocytes, indicating multilineage reconstitution. However, only the erythroid population was positive following RT-PCR analyses, suggesting lineage-restricted expression of the transduced human β-globin gene. Southern blot analyses of total genomic DNA samples isolated from bone marrow cells from transplanted mice also documented proviral integration. These results provide further support for the potential use of recombinant AAV vectors in gene therapy of β-thalassemia and sickle-cell disease.

Original languageEnglish (US)
Pages (from-to)940-946
Number of pages7
JournalMolecular Therapy
Volume3
Issue number6
DOIs
StatePublished - Jan 1 2001

Keywords

  • β-globin
  • β-thalassemia
  • Adeno-associated virus
  • Erythroid cell lineage
  • Gene expression
  • Gene therapy
  • Hematopoietic stem/progenitor cells
  • Sickle-cell disease
  • Viral vector

ASJC Scopus subject areas

  • Molecular Biology

Fingerprint Dive into the research topics of 'Adeno-associated virus 2-mediated transduction and erythroid lineage-restricted long-term expression of the human β-globin gene in hematopoietic cells from homozygous β-thalassemic mice'. Together they form a unique fingerprint.

  • Cite this