Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats

Zheng Ming Ding, Cynthia M. Ingraham, Zachary Rodd, William J. McBride

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.

Original languageEnglish (US)
Pages (from-to)41-48
Number of pages8
JournalNeuropharmacology
Volume109
DOIs
StatePublished - Oct 1 2016

Fingerprint

Dopamine Agents
Ventral Tegmental Area
Metabotropic Glutamate Receptors
Alcohol Drinking
Dopamine
Ethanol
Alcohols
Sulpiride
LY 341495
Glutamic Acid
Microdialysis
Nucleus Accumbens
Water
Dopaminergic Neurons
Glutamate Receptors

Keywords

  • Dopamine
  • Ethanol
  • Glutamate
  • LY341495
  • Nucleus accumbens
  • Sulpiride
  • Ventral tegmental area

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Pharmacology

Cite this

@article{f522f5f52c9949928dd4a5d373fba0f6,
title = "Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats",
abstract = "Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg{\%}) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg{\%} EtOH: to ∼ 210 vs 150{\%} of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160{\%} of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180{\%} and 180-230{\%} of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.",
keywords = "Dopamine, Ethanol, Glutamate, LY341495, Nucleus accumbens, Sulpiride, Ventral tegmental area",
author = "Ding, {Zheng Ming} and Ingraham, {Cynthia M.} and Zachary Rodd and McBride, {William J.}",
year = "2016",
month = "10",
day = "1",
doi = "10.1016/j.neuropharm.2016.05.023",
language = "English (US)",
volume = "109",
pages = "41--48",
journal = "Neuropharmacology",
issn = "0028-3908",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Alcohol drinking increases the dopamine-stimulating effects of ethanol and reduces D2 auto-receptor and group II metabotropic glutamate receptor function within the posterior ventral tegmental area of alcohol preferring (P) rats

AU - Ding, Zheng Ming

AU - Ingraham, Cynthia M.

AU - Rodd, Zachary

AU - McBride, William J.

PY - 2016/10/1

Y1 - 2016/10/1

N2 - Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.

AB - Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA.

KW - Dopamine

KW - Ethanol

KW - Glutamate

KW - LY341495

KW - Nucleus accumbens

KW - Sulpiride

KW - Ventral tegmental area

UR - http://www.scopus.com/inward/record.url?scp=84974720083&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84974720083&partnerID=8YFLogxK

U2 - 10.1016/j.neuropharm.2016.05.023

DO - 10.1016/j.neuropharm.2016.05.023

M3 - Article

C2 - 27260326

AN - SCOPUS:84974720083

VL - 109

SP - 41

EP - 48

JO - Neuropharmacology

JF - Neuropharmacology

SN - 0028-3908

ER -