An efficient post-hoc integration method improving peak alignment of metabolomics data from GCxGC/TOF-MS

Jaesik Jeong, Xiang Zhang, Xue Shi, Seongho Kim, Changyu Shen

Research output: Contribution to journalArticle

10 Scopus citations


Background: Since peak alignment in metabolomics has a huge effect on the subsequent statistical analysis, it is considered a key preprocessing step and many peak alignment methods have been developed. However, existing peak alignment methods do not produce satisfactory results. Indeed, the lack of accuracy results from the fact that peak alignment is done separately from another preprocessing step such as identification. Therefore, a post-hoc approach, which integrates both identification and alignment results, is in urgent need for the purpose of increasing the accuracy of peak alignment.Results: The proposed post-hoc method was validated with three datasets such as a mixture of compound standards, metabolite extract from mouse liver, and metabolite extract from wheat. Compared to the existing methods, the proposed approach improved peak alignment in terms of various performance measures. Also, post-hoc approach was verified to improve peak alignment by manual inspection.Conclusions: The proposed approach, which combines the information of metabolite identification and alignment, clearly improves the accuracy of peak alignment in terms of several performance measures. R package and examples using a dataset are available at

Original languageEnglish (US)
Article number123
JournalBMC bioinformatics
StatePublished - Apr 10 2013

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint Dive into the research topics of 'An efficient post-hoc integration method improving peak alignment of metabolomics data from GCxGC/TOF-MS'. Together they form a unique fingerprint.

  • Cite this