Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents

Chih Chieh Yu, Tomohiko Ai, James N. Weiss, Peng-Sheng Chen

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Background: Apamin is commonly used as a small-conductance Ca 2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear. Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents. Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration. Results: Ca2+ currents (CACNA1c +CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20;37] to 23 [18;32] pA/pF; KCNH2+KCNE2, from 28 [24;30] to 27 [24;29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both). Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

Original languageEnglish
Article numbere96691
JournalPLoS One
Volume9
Issue number5
DOIs
StatePublished - May 5 2014

Fingerprint

Apamin
calcium
myocytes
rabbits
patch-clamp technique
kidney cells
heart
ions
Muscle Cells
Flecainide
Rabbits
testing
cells
Clamping devices
Patch-Clamp Techniques
Nifedipine
methodology
Current density
Ions
Tissue

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents. / Yu, Chih Chieh; Ai, Tomohiko; Weiss, James N.; Chen, Peng-Sheng.

In: PLoS One, Vol. 9, No. 5, e96691, 05.05.2014.

Research output: Contribution to journalArticle

@article{ffca886322f9457abdf775690293cb57,
title = "Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents",
abstract = "Background: Apamin is commonly used as a small-conductance Ca 2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear. Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents. Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration. Results: Ca2+ currents (CACNA1c +CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20;37] to 23 [18;32] pA/pF; KCNH2+KCNE2, from 28 [24;30] to 27 [24;29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both). Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.",
author = "Yu, {Chih Chieh} and Tomohiko Ai and Weiss, {James N.} and Peng-Sheng Chen",
year = "2014",
month = "5",
day = "5",
doi = "10.1371/journal.pone.0096691",
language = "English",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "5",

}

TY - JOUR

T1 - Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents

AU - Yu, Chih Chieh

AU - Ai, Tomohiko

AU - Weiss, James N.

AU - Chen, Peng-Sheng

PY - 2014/5/5

Y1 - 2014/5/5

N2 - Background: Apamin is commonly used as a small-conductance Ca 2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear. Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents. Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration. Results: Ca2+ currents (CACNA1c +CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20;37] to 23 [18;32] pA/pF; KCNH2+KCNE2, from 28 [24;30] to 27 [24;29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both). Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

AB - Background: Apamin is commonly used as a small-conductance Ca 2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear. Objective: To test the hypothesis that apamin does not inhibit any major cardiac ion currents. Methods: We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration. Results: Ca2+ currents (CACNA1c +CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS), but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS), but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018). None of the major K+ currents (IKs, IKr, IK1 and Ito) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20;37] to 23 [18;32] pA/pF; KCNH2+KCNE2, from 28 [24;30] to 27 [24;29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both). Conclusions: Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

UR - http://www.scopus.com/inward/record.url?scp=84900430428&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84900430428&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0096691

DO - 10.1371/journal.pone.0096691

M3 - Article

C2 - 24798465

AN - SCOPUS:84900430428

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 5

M1 - e96691

ER -