BECA: A Software Tool for Integrated Visualization of Human Brain Data

Huang Li, Shiaofen Fang, Bob Zigon, Olaf Sporns, Andrew J. Saykin, Joaquín Goñi, Li Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Visualization plays an important role in helping neuroscientist understanding human brain data. Most publicly available software focuses on visualizing a specific brain imaging modality. Here we present an extensible visualization platform, BECA, which employ a plugin architecture to facilitate rapid development and deployment of visualization for human brain data. This paper will introduce the architecture and discuss some important design decisions in implementing the BECA platform and its visualization plugins.

Original languageEnglish (US)
Title of host publicationBrain Informatics - International Conference, BI 2017, Proceedings
EditorsYi Zeng, Bo Xu, Maryann Martone, Yong He, Hanchuan Peng, Qingming Luo, Jeanette Hellgren Kotaleski
PublisherSpringer Verlag
Pages285-291
Number of pages7
ISBN (Print)9783319707716
DOIs
StatePublished - Jan 1 2017
EventInternational Conference on Brain Informatics, BI 2017 - Beijing, China
Duration: Nov 16 2017Nov 18 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10654 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

OtherInternational Conference on Brain Informatics, BI 2017
CountryChina
CityBeijing
Period11/16/1711/18/17

    Fingerprint

Keywords

  • Human brain data
  • Plugin platform
  • Software architecture
  • Visualization

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Cite this

Li, H., Fang, S., Zigon, B., Sporns, O., Saykin, A. J., Goñi, J., & Shen, L. (2017). BECA: A Software Tool for Integrated Visualization of Human Brain Data. In Y. Zeng, B. Xu, M. Martone, Y. He, H. Peng, Q. Luo, & J. H. Kotaleski (Eds.), Brain Informatics - International Conference, BI 2017, Proceedings (pp. 285-291). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10654 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-319-70772-3_27