Binding of a CTF/NF1-like protein to the mouse colony-stimulating factor-1 gene promoter

B. W. Konicek, X. L. Xia, Maureen Harrington

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Circulating and tissue-specific monocytes/macrophages, through production of hydrolytic enzymes and growth factors, can dramatically affect the local tissue environment. Colony-stimulating factor-1 (CSF-1) is a key regulator of monocyte/macrophage cell activity. CSF-1 is produced by stromal elements, including fibroblasts, which are found in all tissues. To understand at the molecular level how changes in CSF-1 gene transcription are initiated in fibroblasts, we set out to identify the cis-acting elements and cognate trans-acting factor(s) that bind regulatory regions of the mouse CSF-1 gene. Analysis of heterologous reporter constructs containing the mouse CSF-1 promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene in transiently transfected fibroblasts identified a cis-acting element located between base pairs -88 and -43 of the CSF-1 gene. Electrophoretic mobility-shift assays (EMSAs) and DNase I protection assays with nuclear extracts isolated from proliferating fibroblasts revealed distinct protein binding to the region spanning base pairs -90 to -68. Results from methylation interference assays suggest CTF/NF1 or a CTF/NF1-like factor is the cognate trans-acting factor. Mutation of the putative CTF/NF1 binding site in the CSF-1 promoter lead to a modest decrease in promoter activity in transiently transfected fibroblasts and monocytes. Therefore, we have demonstrated that CTF/NF1 or a CTF/NF1-like protein binds to the CSF-1 gene promoter; however, binding of the CTF/NF1-like protein alone does not significantly effect changes in CSF-1 gene promoter activity.

Original languageEnglish
Pages (from-to)961-969
Number of pages9
JournalDNA and Cell Biology
Volume14
Issue number11
StatePublished - 1995

Fingerprint

Neurofibromin 1
Macrophage Colony-Stimulating Factor
Genes
Fibroblasts
Monocytes
Trans-Activators
Base Pairing
Macrophages
Chloramphenicol O-Acetyltransferase
Nucleic Acid Regulatory Sequences
Deoxyribonuclease I
Electrophoretic Mobility Shift Assay
Protein Binding
Methylation
Intercellular Signaling Peptides and Proteins
Binding Sites

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

Binding of a CTF/NF1-like protein to the mouse colony-stimulating factor-1 gene promoter. / Konicek, B. W.; Xia, X. L.; Harrington, Maureen.

In: DNA and Cell Biology, Vol. 14, No. 11, 1995, p. 961-969.

Research output: Contribution to journalArticle

@article{3cd69833dabd4dbaa6a04ced4f8905fc,
title = "Binding of a CTF/NF1-like protein to the mouse colony-stimulating factor-1 gene promoter",
abstract = "Circulating and tissue-specific monocytes/macrophages, through production of hydrolytic enzymes and growth factors, can dramatically affect the local tissue environment. Colony-stimulating factor-1 (CSF-1) is a key regulator of monocyte/macrophage cell activity. CSF-1 is produced by stromal elements, including fibroblasts, which are found in all tissues. To understand at the molecular level how changes in CSF-1 gene transcription are initiated in fibroblasts, we set out to identify the cis-acting elements and cognate trans-acting factor(s) that bind regulatory regions of the mouse CSF-1 gene. Analysis of heterologous reporter constructs containing the mouse CSF-1 promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene in transiently transfected fibroblasts identified a cis-acting element located between base pairs -88 and -43 of the CSF-1 gene. Electrophoretic mobility-shift assays (EMSAs) and DNase I protection assays with nuclear extracts isolated from proliferating fibroblasts revealed distinct protein binding to the region spanning base pairs -90 to -68. Results from methylation interference assays suggest CTF/NF1 or a CTF/NF1-like factor is the cognate trans-acting factor. Mutation of the putative CTF/NF1 binding site in the CSF-1 promoter lead to a modest decrease in promoter activity in transiently transfected fibroblasts and monocytes. Therefore, we have demonstrated that CTF/NF1 or a CTF/NF1-like protein binds to the CSF-1 gene promoter; however, binding of the CTF/NF1-like protein alone does not significantly effect changes in CSF-1 gene promoter activity.",
author = "Konicek, {B. W.} and Xia, {X. L.} and Maureen Harrington",
year = "1995",
language = "English",
volume = "14",
pages = "961--969",
journal = "DNA and Cell Biology",
issn = "1044-5498",
publisher = "Mary Ann Liebert Inc.",
number = "11",

}

TY - JOUR

T1 - Binding of a CTF/NF1-like protein to the mouse colony-stimulating factor-1 gene promoter

AU - Konicek, B. W.

AU - Xia, X. L.

AU - Harrington, Maureen

PY - 1995

Y1 - 1995

N2 - Circulating and tissue-specific monocytes/macrophages, through production of hydrolytic enzymes and growth factors, can dramatically affect the local tissue environment. Colony-stimulating factor-1 (CSF-1) is a key regulator of monocyte/macrophage cell activity. CSF-1 is produced by stromal elements, including fibroblasts, which are found in all tissues. To understand at the molecular level how changes in CSF-1 gene transcription are initiated in fibroblasts, we set out to identify the cis-acting elements and cognate trans-acting factor(s) that bind regulatory regions of the mouse CSF-1 gene. Analysis of heterologous reporter constructs containing the mouse CSF-1 promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene in transiently transfected fibroblasts identified a cis-acting element located between base pairs -88 and -43 of the CSF-1 gene. Electrophoretic mobility-shift assays (EMSAs) and DNase I protection assays with nuclear extracts isolated from proliferating fibroblasts revealed distinct protein binding to the region spanning base pairs -90 to -68. Results from methylation interference assays suggest CTF/NF1 or a CTF/NF1-like factor is the cognate trans-acting factor. Mutation of the putative CTF/NF1 binding site in the CSF-1 promoter lead to a modest decrease in promoter activity in transiently transfected fibroblasts and monocytes. Therefore, we have demonstrated that CTF/NF1 or a CTF/NF1-like protein binds to the CSF-1 gene promoter; however, binding of the CTF/NF1-like protein alone does not significantly effect changes in CSF-1 gene promoter activity.

AB - Circulating and tissue-specific monocytes/macrophages, through production of hydrolytic enzymes and growth factors, can dramatically affect the local tissue environment. Colony-stimulating factor-1 (CSF-1) is a key regulator of monocyte/macrophage cell activity. CSF-1 is produced by stromal elements, including fibroblasts, which are found in all tissues. To understand at the molecular level how changes in CSF-1 gene transcription are initiated in fibroblasts, we set out to identify the cis-acting elements and cognate trans-acting factor(s) that bind regulatory regions of the mouse CSF-1 gene. Analysis of heterologous reporter constructs containing the mouse CSF-1 promoter linked to the bacterial chloramphenicol acetyltransferase (CAT) gene in transiently transfected fibroblasts identified a cis-acting element located between base pairs -88 and -43 of the CSF-1 gene. Electrophoretic mobility-shift assays (EMSAs) and DNase I protection assays with nuclear extracts isolated from proliferating fibroblasts revealed distinct protein binding to the region spanning base pairs -90 to -68. Results from methylation interference assays suggest CTF/NF1 or a CTF/NF1-like factor is the cognate trans-acting factor. Mutation of the putative CTF/NF1 binding site in the CSF-1 promoter lead to a modest decrease in promoter activity in transiently transfected fibroblasts and monocytes. Therefore, we have demonstrated that CTF/NF1 or a CTF/NF1-like protein binds to the CSF-1 gene promoter; however, binding of the CTF/NF1-like protein alone does not significantly effect changes in CSF-1 gene promoter activity.

UR - http://www.scopus.com/inward/record.url?scp=0028882522&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028882522&partnerID=8YFLogxK

M3 - Article

C2 - 7576183

AN - SCOPUS:0028882522

VL - 14

SP - 961

EP - 969

JO - DNA and Cell Biology

JF - DNA and Cell Biology

SN - 1044-5498

IS - 11

ER -