Biomechanical forces promote embryonic haematopoiesis

Luigi Adamo, Olaia Naveiras, Pamela L. Wenzel, Shannon McKinney-Freeman, Peter J. Mack, Jorge Gracia-Sancho, Astrid Suchy-Dicey, Momoko Yoshimoto, M. William Lensch, Mervin Yoder, Guillermo Garcia-Cardeña, George Q. Daley

Research output: Contribution to journalArticle

310 Citations (Scopus)

Abstract

Biomechanical forces arc emerging as critical regulators of embryo-genesis, particularly in the developing cardiovascular system1,2. After initiation of the heart beat in vertebrates, cells lining the vent-ral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells 4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this devel-opmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7, concomitantly aug-menting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta - gonads - mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.

Original languageEnglish
Pages (from-to)1131-1135
Number of pages5
JournalNature
Volume459
Issue number7250
DOIs
StatePublished - Jun 25 2009

Fingerprint

Hematopoiesis
Aorta
Embryonic Structures
Mesonephros
Umbilical Arteries
Gonads
Blood Vessels
Vertebrates
Nitric Oxide
Transcription Factors
In Vitro Techniques
Mouse Embryonic Stem Cells

ASJC Scopus subject areas

  • General

Cite this

Adamo, L., Naveiras, O., Wenzel, P. L., McKinney-Freeman, S., Mack, P. J., Gracia-Sancho, J., ... Daley, G. Q. (2009). Biomechanical forces promote embryonic haematopoiesis. Nature, 459(7250), 1131-1135. https://doi.org/10.1038/nature08073

Biomechanical forces promote embryonic haematopoiesis. / Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin; Garcia-Cardeña, Guillermo; Daley, George Q.

In: Nature, Vol. 459, No. 7250, 25.06.2009, p. 1131-1135.

Research output: Contribution to journalArticle

Adamo, L, Naveiras, O, Wenzel, PL, McKinney-Freeman, S, Mack, PJ, Gracia-Sancho, J, Suchy-Dicey, A, Yoshimoto, M, Lensch, MW, Yoder, M, Garcia-Cardeña, G & Daley, GQ 2009, 'Biomechanical forces promote embryonic haematopoiesis', Nature, vol. 459, no. 7250, pp. 1131-1135. https://doi.org/10.1038/nature08073
Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J et al. Biomechanical forces promote embryonic haematopoiesis. Nature. 2009 Jun 25;459(7250):1131-1135. https://doi.org/10.1038/nature08073
Adamo, Luigi ; Naveiras, Olaia ; Wenzel, Pamela L. ; McKinney-Freeman, Shannon ; Mack, Peter J. ; Gracia-Sancho, Jorge ; Suchy-Dicey, Astrid ; Yoshimoto, Momoko ; Lensch, M. William ; Yoder, Mervin ; Garcia-Cardeña, Guillermo ; Daley, George Q. / Biomechanical forces promote embryonic haematopoiesis. In: Nature. 2009 ; Vol. 459, No. 7250. pp. 1131-1135.
@article{210f6f896b4e479b94c4f1effcb3f22a,
title = "Biomechanical forces promote embryonic haematopoiesis",
abstract = "Biomechanical forces arc emerging as critical regulators of embryo-genesis, particularly in the developing cardiovascular system1,2. After initiation of the heart beat in vertebrates, cells lining the vent-ral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells 4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this devel-opmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7, concomitantly aug-menting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta - gonads - mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.",
author = "Luigi Adamo and Olaia Naveiras and Wenzel, {Pamela L.} and Shannon McKinney-Freeman and Mack, {Peter J.} and Jorge Gracia-Sancho and Astrid Suchy-Dicey and Momoko Yoshimoto and Lensch, {M. William} and Mervin Yoder and Guillermo Garcia-Carde{\~n}a and Daley, {George Q.}",
year = "2009",
month = "6",
day = "25",
doi = "10.1038/nature08073",
language = "English",
volume = "459",
pages = "1131--1135",
journal = "Nature",
issn = "0028-0836",
publisher = "Nature Publishing Group",
number = "7250",

}

TY - JOUR

T1 - Biomechanical forces promote embryonic haematopoiesis

AU - Adamo, Luigi

AU - Naveiras, Olaia

AU - Wenzel, Pamela L.

AU - McKinney-Freeman, Shannon

AU - Mack, Peter J.

AU - Gracia-Sancho, Jorge

AU - Suchy-Dicey, Astrid

AU - Yoshimoto, Momoko

AU - Lensch, M. William

AU - Yoder, Mervin

AU - Garcia-Cardeña, Guillermo

AU - Daley, George Q.

PY - 2009/6/25

Y1 - 2009/6/25

N2 - Biomechanical forces arc emerging as critical regulators of embryo-genesis, particularly in the developing cardiovascular system1,2. After initiation of the heart beat in vertebrates, cells lining the vent-ral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells 4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this devel-opmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7, concomitantly aug-menting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta - gonads - mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.

AB - Biomechanical forces arc emerging as critical regulators of embryo-genesis, particularly in the developing cardiovascular system1,2. After initiation of the heart beat in vertebrates, cells lining the vent-ral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells 4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this devel-opmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7, concomitantly aug-menting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta - gonads - mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.

UR - http://www.scopus.com/inward/record.url?scp=67649472554&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649472554&partnerID=8YFLogxK

U2 - 10.1038/nature08073

DO - 10.1038/nature08073

M3 - Article

C2 - 19440194

AN - SCOPUS:67649472554

VL - 459

SP - 1131

EP - 1135

JO - Nature

JF - Nature

SN - 0028-0836

IS - 7250

ER -