Calcium‐stimulated sodium efflux from rabbit vascular smooth muscle.

J. H. Kaplan, Brian Kennedy, A. P. Somlyo

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

1. The effects of the addition of Ca2+ on ouabain‐resistant 22Na+ efflux from Na+‐loaded strips of rabbit portal anterior mesenteric vein in Ca2+‐free media have been studied. 2. Na+ efflux into Li+ media containing 5 mM‐KCl is rapidly and transiently stimulated some 4‐ to 5‐fold on the addition of Ca2+ (1.2 mM). No stimulation is observed if the Li+ medium is K+ free or if Na+ replaces Li+ ions. This Ca2+‐activated Na+ efflux is not obligatorily coupled to Na+ influx. 3. The stimulation of Na+ efflux could also be triggered by the addition of 5 mM‐K+ to a Ca2+‐containing K+‐free medium. The Ca2+‐activated increase in Na+ efflux also occurred when K+ was the sole monovalent extracellular cation. Rb+ could substitute for the K+ requirement. Thus the Na+ efflux is not mediated by a system which has a specific requirement for counter‐transport of Li+ or one in which Li+ but not K+ are counter‐transported such as the familiar Na+‐H+ exchange system. Acidification of the external medium reduced the Ca2+‐stimulated Na+ efflux, in keeping with the conclusion that this efflux was not due to Na+‐H+ exchange. 4. Progressive reduction of external [Ca2+] increased the time‐lag to peak activation of Na+ efflux, suggesting that the effects of added Ca2+ were mediated by a rise in intracellular Ca2+. Under experimental conditions which did not result in activation of the Na+ efflux by the addition of extracellular Ca2+ alone (e.g. in Na+ media), addition of Ca2+ plus the Ca2+ ionophore, ionomycin, stimulated Na+ efflux. This further confirms that intracellular sites for Ca2+ are critical for the activation of Na+ efflux. In the absence of ionophore, in Na+ media, intracellular Ca2+ is not sufficiently increased when extracellular Ca2+ is added. A partial (40%) block of Ca2+‐activated Na+ efflux by amiloride (2 X 10(‐3) M) could also be overcome by the addition of ionomycin. 5. The lack of effect of a variety of inhibitors suggests that the Ca2+‐stimulated Na+ efflux mechanism is not mediated via a Na+‐K+‐Cl‐ co‐transport system or a Na+‐H+ counter‐transport system, or Na+‐Ca2+ exchange. 6. The activation of Na+ efflux in smooth muscle by Ca2+ ions seems to involve Ca2+ entry partially via an extracellular Ca2+‐intracellular Na+ exchange and also through other parallel pathway(s), followed by a rise in intracellular Ca2+ that activates Na+ efflux through a Ca2+‐sensitive Na+ channel or other transport pathway.

Original languageEnglish (US)
Pages (from-to)245-260
Number of pages16
JournalThe Journal of Physiology
Volume388
Issue number1
DOIs
StatePublished - Jul 1 1987
Externally publishedYes

Fingerprint

Ionomycin
Ionophores
Vascular Smooth Muscle
Sodium
Ions
Rabbits
Mesenteric Veins
Monovalent Cations
Amiloride
Smooth Muscle

ASJC Scopus subject areas

  • Physiology

Cite this

Calcium‐stimulated sodium efflux from rabbit vascular smooth muscle. / Kaplan, J. H.; Kennedy, Brian; Somlyo, A. P.

In: The Journal of Physiology, Vol. 388, No. 1, 01.07.1987, p. 245-260.

Research output: Contribution to journalArticle

Kaplan, J. H. ; Kennedy, Brian ; Somlyo, A. P. / Calcium‐stimulated sodium efflux from rabbit vascular smooth muscle. In: The Journal of Physiology. 1987 ; Vol. 388, No. 1. pp. 245-260.
@article{868c35b4c3584342bc408e8518ab8cc7,
title = "Calcium‐stimulated sodium efflux from rabbit vascular smooth muscle.",
abstract = "1. The effects of the addition of Ca2+ on ouabain‐resistant 22Na+ efflux from Na+‐loaded strips of rabbit portal anterior mesenteric vein in Ca2+‐free media have been studied. 2. Na+ efflux into Li+ media containing 5 mM‐KCl is rapidly and transiently stimulated some 4‐ to 5‐fold on the addition of Ca2+ (1.2 mM). No stimulation is observed if the Li+ medium is K+ free or if Na+ replaces Li+ ions. This Ca2+‐activated Na+ efflux is not obligatorily coupled to Na+ influx. 3. The stimulation of Na+ efflux could also be triggered by the addition of 5 mM‐K+ to a Ca2+‐containing K+‐free medium. The Ca2+‐activated increase in Na+ efflux also occurred when K+ was the sole monovalent extracellular cation. Rb+ could substitute for the K+ requirement. Thus the Na+ efflux is not mediated by a system which has a specific requirement for counter‐transport of Li+ or one in which Li+ but not K+ are counter‐transported such as the familiar Na+‐H+ exchange system. Acidification of the external medium reduced the Ca2+‐stimulated Na+ efflux, in keeping with the conclusion that this efflux was not due to Na+‐H+ exchange. 4. Progressive reduction of external [Ca2+] increased the time‐lag to peak activation of Na+ efflux, suggesting that the effects of added Ca2+ were mediated by a rise in intracellular Ca2+. Under experimental conditions which did not result in activation of the Na+ efflux by the addition of extracellular Ca2+ alone (e.g. in Na+ media), addition of Ca2+ plus the Ca2+ ionophore, ionomycin, stimulated Na+ efflux. This further confirms that intracellular sites for Ca2+ are critical for the activation of Na+ efflux. In the absence of ionophore, in Na+ media, intracellular Ca2+ is not sufficiently increased when extracellular Ca2+ is added. A partial (40{\%}) block of Ca2+‐activated Na+ efflux by amiloride (2 X 10(‐3) M) could also be overcome by the addition of ionomycin. 5. The lack of effect of a variety of inhibitors suggests that the Ca2+‐stimulated Na+ efflux mechanism is not mediated via a Na+‐K+‐Cl‐ co‐transport system or a Na+‐H+ counter‐transport system, or Na+‐Ca2+ exchange. 6. The activation of Na+ efflux in smooth muscle by Ca2+ ions seems to involve Ca2+ entry partially via an extracellular Ca2+‐intracellular Na+ exchange and also through other parallel pathway(s), followed by a rise in intracellular Ca2+ that activates Na+ efflux through a Ca2+‐sensitive Na+ channel or other transport pathway.",
author = "Kaplan, {J. H.} and Brian Kennedy and Somlyo, {A. P.}",
year = "1987",
month = "7",
day = "1",
doi = "10.1113/jphysiol.1987.sp016613",
language = "English (US)",
volume = "388",
pages = "245--260",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Calcium‐stimulated sodium efflux from rabbit vascular smooth muscle.

AU - Kaplan, J. H.

AU - Kennedy, Brian

AU - Somlyo, A. P.

PY - 1987/7/1

Y1 - 1987/7/1

N2 - 1. The effects of the addition of Ca2+ on ouabain‐resistant 22Na+ efflux from Na+‐loaded strips of rabbit portal anterior mesenteric vein in Ca2+‐free media have been studied. 2. Na+ efflux into Li+ media containing 5 mM‐KCl is rapidly and transiently stimulated some 4‐ to 5‐fold on the addition of Ca2+ (1.2 mM). No stimulation is observed if the Li+ medium is K+ free or if Na+ replaces Li+ ions. This Ca2+‐activated Na+ efflux is not obligatorily coupled to Na+ influx. 3. The stimulation of Na+ efflux could also be triggered by the addition of 5 mM‐K+ to a Ca2+‐containing K+‐free medium. The Ca2+‐activated increase in Na+ efflux also occurred when K+ was the sole monovalent extracellular cation. Rb+ could substitute for the K+ requirement. Thus the Na+ efflux is not mediated by a system which has a specific requirement for counter‐transport of Li+ or one in which Li+ but not K+ are counter‐transported such as the familiar Na+‐H+ exchange system. Acidification of the external medium reduced the Ca2+‐stimulated Na+ efflux, in keeping with the conclusion that this efflux was not due to Na+‐H+ exchange. 4. Progressive reduction of external [Ca2+] increased the time‐lag to peak activation of Na+ efflux, suggesting that the effects of added Ca2+ were mediated by a rise in intracellular Ca2+. Under experimental conditions which did not result in activation of the Na+ efflux by the addition of extracellular Ca2+ alone (e.g. in Na+ media), addition of Ca2+ plus the Ca2+ ionophore, ionomycin, stimulated Na+ efflux. This further confirms that intracellular sites for Ca2+ are critical for the activation of Na+ efflux. In the absence of ionophore, in Na+ media, intracellular Ca2+ is not sufficiently increased when extracellular Ca2+ is added. A partial (40%) block of Ca2+‐activated Na+ efflux by amiloride (2 X 10(‐3) M) could also be overcome by the addition of ionomycin. 5. The lack of effect of a variety of inhibitors suggests that the Ca2+‐stimulated Na+ efflux mechanism is not mediated via a Na+‐K+‐Cl‐ co‐transport system or a Na+‐H+ counter‐transport system, or Na+‐Ca2+ exchange. 6. The activation of Na+ efflux in smooth muscle by Ca2+ ions seems to involve Ca2+ entry partially via an extracellular Ca2+‐intracellular Na+ exchange and also through other parallel pathway(s), followed by a rise in intracellular Ca2+ that activates Na+ efflux through a Ca2+‐sensitive Na+ channel or other transport pathway.

AB - 1. The effects of the addition of Ca2+ on ouabain‐resistant 22Na+ efflux from Na+‐loaded strips of rabbit portal anterior mesenteric vein in Ca2+‐free media have been studied. 2. Na+ efflux into Li+ media containing 5 mM‐KCl is rapidly and transiently stimulated some 4‐ to 5‐fold on the addition of Ca2+ (1.2 mM). No stimulation is observed if the Li+ medium is K+ free or if Na+ replaces Li+ ions. This Ca2+‐activated Na+ efflux is not obligatorily coupled to Na+ influx. 3. The stimulation of Na+ efflux could also be triggered by the addition of 5 mM‐K+ to a Ca2+‐containing K+‐free medium. The Ca2+‐activated increase in Na+ efflux also occurred when K+ was the sole monovalent extracellular cation. Rb+ could substitute for the K+ requirement. Thus the Na+ efflux is not mediated by a system which has a specific requirement for counter‐transport of Li+ or one in which Li+ but not K+ are counter‐transported such as the familiar Na+‐H+ exchange system. Acidification of the external medium reduced the Ca2+‐stimulated Na+ efflux, in keeping with the conclusion that this efflux was not due to Na+‐H+ exchange. 4. Progressive reduction of external [Ca2+] increased the time‐lag to peak activation of Na+ efflux, suggesting that the effects of added Ca2+ were mediated by a rise in intracellular Ca2+. Under experimental conditions which did not result in activation of the Na+ efflux by the addition of extracellular Ca2+ alone (e.g. in Na+ media), addition of Ca2+ plus the Ca2+ ionophore, ionomycin, stimulated Na+ efflux. This further confirms that intracellular sites for Ca2+ are critical for the activation of Na+ efflux. In the absence of ionophore, in Na+ media, intracellular Ca2+ is not sufficiently increased when extracellular Ca2+ is added. A partial (40%) block of Ca2+‐activated Na+ efflux by amiloride (2 X 10(‐3) M) could also be overcome by the addition of ionomycin. 5. The lack of effect of a variety of inhibitors suggests that the Ca2+‐stimulated Na+ efflux mechanism is not mediated via a Na+‐K+‐Cl‐ co‐transport system or a Na+‐H+ counter‐transport system, or Na+‐Ca2+ exchange. 6. The activation of Na+ efflux in smooth muscle by Ca2+ ions seems to involve Ca2+ entry partially via an extracellular Ca2+‐intracellular Na+ exchange and also through other parallel pathway(s), followed by a rise in intracellular Ca2+ that activates Na+ efflux through a Ca2+‐sensitive Na+ channel or other transport pathway.

UR - http://www.scopus.com/inward/record.url?scp=0023162342&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023162342&partnerID=8YFLogxK

U2 - 10.1113/jphysiol.1987.sp016613

DO - 10.1113/jphysiol.1987.sp016613

M3 - Article

VL - 388

SP - 245

EP - 260

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 1

ER -