Cell biology of Paget's disease

Sakamuri V. Reddy, Cheikh Menaa, Frederick R. Singer, Anne Demulder, G. David Roodman

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

Paget's disease is characterized by markedly increased osteoclast formation and bone resorption followed by excessive new bone formation. Osteoclasts in Paget's disease are increased both in number and size, contain paramyxoviral-like nuclear inclusions, and can have up to 100 nuclei per cell. Marrow culture studies have identified several abnormalities in osteoclast formation in Paget's disease. Osteoclast-like multinucleated cells formed more rapidly in marrow cultures from patients with Paget's disease, produced increased levels of interleukin-6 (IL-6), and expressed high levels of IL-6 receptors compared to normals. IL-6 levels were also increased in bone marrow and peripheral blood of patients with Paget's disease. In addition, osteoclast precursors from patients with Paget's disease are hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and calcitonin. The increased sensitivity of osteoclast precursors to 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), since 24-hydroxylase activity is also up-regulated at concentrations of 1,25(OH)2D3 that are one log less than that needed to induce 24-hydroxylase activity in osteoclast precursors from normals. However, VDR numbers and affinity for 1,25(OH)2D3 do not differ in osteoclast precursors from Paget's patients compared to those from normals. Synergistic interactions between cytokines such as IL-6 and 1,25(OH)2D3 also cannot explain the enhanced sensitivity of osteoclast precursors from patients with Paget's disease to 1,25(OH)2D3. Interestingly, coculture studies of osteoclast precursors and cells from the marrow microenvironment of patients with Paget's disease and normals have demonstrated that the marrow microenvironment is more osteoclastogenic than normal. Thus, studies of the cell biology of osteoclasts in Paget's disease have demonstrated an increased rate of osteoclast formation and abnormalities in both osteoclast precursors and the marrow microenvironment. Enhanced IL-6 production by osteoclasts in Paget's disease may further amplify the increased osteoclast formation already ongoing in the pagetic lesion, and may explain the increased bone turnover at uninvolved sites distant from the pagetic lesion.

Original languageEnglish (US)
Pages (from-to)3-8
Number of pages6
JournalJournal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Volume14
Issue numberSUPPL. 2
DOIs
StatePublished - 1999
Externally publishedYes

Fingerprint

Osteoclasts
Cell Biology
Bone Marrow
Interleukin-6
Calcitriol Receptors
Mixed Function Oxygenases
Cellular Microenvironment
Interleukin-6 Receptors
Intranuclear Inclusion Bodies
Calcitriol
Bone Remodeling
Calcitonin
Bone Resorption
Coculture Techniques
Cell Nucleus
Interleukin-1
Osteogenesis

ASJC Scopus subject areas

  • Surgery

Cite this

Cell biology of Paget's disease. / Reddy, Sakamuri V.; Menaa, Cheikh; Singer, Frederick R.; Demulder, Anne; Roodman, G. David.

In: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, Vol. 14, No. SUPPL. 2, 1999, p. 3-8.

Research output: Contribution to journalArticle

Reddy, Sakamuri V. ; Menaa, Cheikh ; Singer, Frederick R. ; Demulder, Anne ; Roodman, G. David. / Cell biology of Paget's disease. In: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 1999 ; Vol. 14, No. SUPPL. 2. pp. 3-8.
@article{629348f81dbc4ddbb3a60df904ec5be5,
title = "Cell biology of Paget's disease",
abstract = "Paget's disease is characterized by markedly increased osteoclast formation and bone resorption followed by excessive new bone formation. Osteoclasts in Paget's disease are increased both in number and size, contain paramyxoviral-like nuclear inclusions, and can have up to 100 nuclei per cell. Marrow culture studies have identified several abnormalities in osteoclast formation in Paget's disease. Osteoclast-like multinucleated cells formed more rapidly in marrow cultures from patients with Paget's disease, produced increased levels of interleukin-6 (IL-6), and expressed high levels of IL-6 receptors compared to normals. IL-6 levels were also increased in bone marrow and peripheral blood of patients with Paget's disease. In addition, osteoclast precursors from patients with Paget's disease are hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and calcitonin. The increased sensitivity of osteoclast precursors to 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), since 24-hydroxylase activity is also up-regulated at concentrations of 1,25(OH)2D3 that are one log less than that needed to induce 24-hydroxylase activity in osteoclast precursors from normals. However, VDR numbers and affinity for 1,25(OH)2D3 do not differ in osteoclast precursors from Paget's patients compared to those from normals. Synergistic interactions between cytokines such as IL-6 and 1,25(OH)2D3 also cannot explain the enhanced sensitivity of osteoclast precursors from patients with Paget's disease to 1,25(OH)2D3. Interestingly, coculture studies of osteoclast precursors and cells from the marrow microenvironment of patients with Paget's disease and normals have demonstrated that the marrow microenvironment is more osteoclastogenic than normal. Thus, studies of the cell biology of osteoclasts in Paget's disease have demonstrated an increased rate of osteoclast formation and abnormalities in both osteoclast precursors and the marrow microenvironment. Enhanced IL-6 production by osteoclasts in Paget's disease may further amplify the increased osteoclast formation already ongoing in the pagetic lesion, and may explain the increased bone turnover at uninvolved sites distant from the pagetic lesion.",
author = "Reddy, {Sakamuri V.} and Cheikh Menaa and Singer, {Frederick R.} and Anne Demulder and Roodman, {G. David}",
year = "1999",
doi = "10.1359/jbmr.1999.14.1.3",
language = "English (US)",
volume = "14",
pages = "3--8",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "SUPPL. 2",

}

TY - JOUR

T1 - Cell biology of Paget's disease

AU - Reddy, Sakamuri V.

AU - Menaa, Cheikh

AU - Singer, Frederick R.

AU - Demulder, Anne

AU - Roodman, G. David

PY - 1999

Y1 - 1999

N2 - Paget's disease is characterized by markedly increased osteoclast formation and bone resorption followed by excessive new bone formation. Osteoclasts in Paget's disease are increased both in number and size, contain paramyxoviral-like nuclear inclusions, and can have up to 100 nuclei per cell. Marrow culture studies have identified several abnormalities in osteoclast formation in Paget's disease. Osteoclast-like multinucleated cells formed more rapidly in marrow cultures from patients with Paget's disease, produced increased levels of interleukin-6 (IL-6), and expressed high levels of IL-6 receptors compared to normals. IL-6 levels were also increased in bone marrow and peripheral blood of patients with Paget's disease. In addition, osteoclast precursors from patients with Paget's disease are hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and calcitonin. The increased sensitivity of osteoclast precursors to 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), since 24-hydroxylase activity is also up-regulated at concentrations of 1,25(OH)2D3 that are one log less than that needed to induce 24-hydroxylase activity in osteoclast precursors from normals. However, VDR numbers and affinity for 1,25(OH)2D3 do not differ in osteoclast precursors from Paget's patients compared to those from normals. Synergistic interactions between cytokines such as IL-6 and 1,25(OH)2D3 also cannot explain the enhanced sensitivity of osteoclast precursors from patients with Paget's disease to 1,25(OH)2D3. Interestingly, coculture studies of osteoclast precursors and cells from the marrow microenvironment of patients with Paget's disease and normals have demonstrated that the marrow microenvironment is more osteoclastogenic than normal. Thus, studies of the cell biology of osteoclasts in Paget's disease have demonstrated an increased rate of osteoclast formation and abnormalities in both osteoclast precursors and the marrow microenvironment. Enhanced IL-6 production by osteoclasts in Paget's disease may further amplify the increased osteoclast formation already ongoing in the pagetic lesion, and may explain the increased bone turnover at uninvolved sites distant from the pagetic lesion.

AB - Paget's disease is characterized by markedly increased osteoclast formation and bone resorption followed by excessive new bone formation. Osteoclasts in Paget's disease are increased both in number and size, contain paramyxoviral-like nuclear inclusions, and can have up to 100 nuclei per cell. Marrow culture studies have identified several abnormalities in osteoclast formation in Paget's disease. Osteoclast-like multinucleated cells formed more rapidly in marrow cultures from patients with Paget's disease, produced increased levels of interleukin-6 (IL-6), and expressed high levels of IL-6 receptors compared to normals. IL-6 levels were also increased in bone marrow and peripheral blood of patients with Paget's disease. In addition, osteoclast precursors from patients with Paget's disease are hyperresponsive to 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and calcitonin. The increased sensitivity of osteoclast precursors to 1,25(OH)2D3 is mediated through the vitamin D receptor (VDR), since 24-hydroxylase activity is also up-regulated at concentrations of 1,25(OH)2D3 that are one log less than that needed to induce 24-hydroxylase activity in osteoclast precursors from normals. However, VDR numbers and affinity for 1,25(OH)2D3 do not differ in osteoclast precursors from Paget's patients compared to those from normals. Synergistic interactions between cytokines such as IL-6 and 1,25(OH)2D3 also cannot explain the enhanced sensitivity of osteoclast precursors from patients with Paget's disease to 1,25(OH)2D3. Interestingly, coculture studies of osteoclast precursors and cells from the marrow microenvironment of patients with Paget's disease and normals have demonstrated that the marrow microenvironment is more osteoclastogenic than normal. Thus, studies of the cell biology of osteoclasts in Paget's disease have demonstrated an increased rate of osteoclast formation and abnormalities in both osteoclast precursors and the marrow microenvironment. Enhanced IL-6 production by osteoclasts in Paget's disease may further amplify the increased osteoclast formation already ongoing in the pagetic lesion, and may explain the increased bone turnover at uninvolved sites distant from the pagetic lesion.

UR - http://www.scopus.com/inward/record.url?scp=0032868676&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032868676&partnerID=8YFLogxK

U2 - 10.1359/jbmr.1999.14.1.3

DO - 10.1359/jbmr.1999.14.1.3

M3 - Article

C2 - 10510206

AN - SCOPUS:0032868676

VL - 14

SP - 3

EP - 8

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - SUPPL. 2

ER -