Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease

Matthew Allen, C. L. Newman, Xuening (Neal) Chen, M. Granke, J. S. Nyman, Sharon Moe

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Summary: Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD.

Introduction: Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD.

Methods: At 35 weeks of age (>75 % reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a <sup>1</sup>H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests.

Results: Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (−21 % each), lower bw (−10 %), higher PE (+71 %), and higher pw (+46 %) compared to NL. Animals with low turnover had higher Dpd, PE (+71 %), and bw (+7 %) along with lower pw (−60 %) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending.

Conclusions: These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.

Original languageEnglish
Pages (from-to)977-985
Number of pages9
JournalOsteoporosis International
Volume26
Issue number3
DOIs
StatePublished - 2015

Fingerprint

Chronic Renal Insufficiency
Collagen
Bone and Bones
Bone Remodeling
Kidney
Diaphyses
Thigh
Magnetic Resonance Spectroscopy
High Pressure Liquid Chromatography
pyridinoline
pentosidine
Water
deoxypyridinoline

Keywords

  • Advanced glycation end products
  • Bone material properties
  • Bound water
  • Pentosidine
  • Toughness

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism

Cite this

Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease. / Allen, Matthew; Newman, C. L.; Chen, Xuening (Neal); Granke, M.; Nyman, J. S.; Moe, Sharon.

In: Osteoporosis International, Vol. 26, No. 3, 2015, p. 977-985.

Research output: Contribution to journalArticle

@article{eb5c61f78f1244de93d036918e0c2421,
title = "Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease",
abstract = "Summary: Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD.Introduction: Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD.Methods: At 35 weeks of age (>75 {\%} reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a 1H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests.Results: Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (−21 {\%} each), lower bw (−10 {\%}), higher PE (+71 {\%}), and higher pw (+46 {\%}) compared to NL. Animals with low turnover had higher Dpd, PE (+71 {\%}), and bw (+7 {\%}) along with lower pw (−60 {\%}) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending.Conclusions: These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.",
keywords = "Advanced glycation end products, Bone material properties, Bound water, Pentosidine, Toughness",
author = "Matthew Allen and Newman, {C. L.} and Chen, {Xuening (Neal)} and M. Granke and Nyman, {J. S.} and Sharon Moe",
year = "2015",
doi = "10.1007/s00198-014-2978-9",
language = "English",
volume = "26",
pages = "977--985",
journal = "Osteoporosis International",
issn = "0937-941X",
publisher = "Springer London",
number = "3",

}

TY - JOUR

T1 - Changes in skeletal collagen cross-links and matrix hydration in high- and low-turnover chronic kidney disease

AU - Allen, Matthew

AU - Newman, C. L.

AU - Chen, Xuening (Neal)

AU - Granke, M.

AU - Nyman, J. S.

AU - Moe, Sharon

PY - 2015

Y1 - 2015

N2 - Summary: Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD.Introduction: Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD.Methods: At 35 weeks of age (>75 % reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a 1H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests.Results: Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (−21 % each), lower bw (−10 %), higher PE (+71 %), and higher pw (+46 %) compared to NL. Animals with low turnover had higher Dpd, PE (+71 %), and bw (+7 %) along with lower pw (−60 %) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending.Conclusions: These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.

AB - Summary: Chronic kidney disease (CKD) increases fracture risk. The results of this work point to changes in bone collagen and bone hydration as playing a role in bone fragility associated with CKD.Introduction: Clinical data have documented a clear increase in fracture risk associated with chronic kidney disease (CKD). Preclinical studies have shown reductions in bone mechanical properties although the tissue-level mechanisms for these differences remain unclear. The goal of this study was to assess collagen cross-links and matrix hydration, two variables known to affect mechanical properties, in animals with either high- or low-turnover CKD.Methods: At 35 weeks of age (>75 % reduction in kidney function), the femoral diaphysis of male Cy/+ rats with high or low bone turnover rates, along with normal littermate (NL) controls, were assessed for collagen cross-links (pyridinoline (Pyd), deoxypyridinoline (Dpd), and pentosidine (PE)) using a high-performance liquid chromatography (HPLC) assay as well as pore and bound water per volume (pw and bw) using a 1H nuclear magnetic resonance (NMR) technique. Material-level biomechanical properties were calculated based on previously published whole bone mechanical tests.Results: Cortical bone from animals with high-turnover disease had lower Pyd and Dpd cross-link levels (−21 % each), lower bw (−10 %), higher PE (+71 %), and higher pw (+46 %) compared to NL. Animals with low turnover had higher Dpd, PE (+71 %), and bw (+7 %) along with lower pw (−60 %) compared to NL. Both high- and low-turnover animals had reduced material-level bone toughness compared to NL animals as determined by three-point bending.Conclusions: These data document an increase in skeletal PE with advanced CKD that is independent of bone turnover rate and inversely related to decline in kidney function. Although hydration changes occur in both high- and low-turnover disease, the data suggest that nonenzymatic collagen cross-links may be a key factor in compromised mechanical properties of CKD.

KW - Advanced glycation end products

KW - Bone material properties

KW - Bound water

KW - Pentosidine

KW - Toughness

UR - http://www.scopus.com/inward/record.url?scp=84925489696&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84925489696&partnerID=8YFLogxK

U2 - 10.1007/s00198-014-2978-9

DO - 10.1007/s00198-014-2978-9

M3 - Article

C2 - 25466530

AN - SCOPUS:84925489696

VL - 26

SP - 977

EP - 985

JO - Osteoporosis International

JF - Osteoporosis International

SN - 0937-941X

IS - 3

ER -