Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2

Yuling Chi, Bo Zhou, Wei Qing Wang, Sung Kee Chung, Yong Uk Kwon, Young Hoon Ahn, Young Tae Chang, Yosuke Tsujishita, James H. Hurley, Zhong-Yin Zhang

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co 2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) ≈ Ins(4,5)P2 ≈ Ins(1,4,5)P 3 ≈ Ins(4,5,6)P3 > PtdIns(3,5)P2 ≈ PtdIns(3,4,5)P3 ≈ Ins(1,2,4,5)P4 ≈ Ins(1,3,4,5)P4 ≈ Ins-(2,4,5,6)P4 ≈ Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P 5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 ≈ PtdIns(3,5)P2 ≈ Ins(1,4,5,6)P4 ≈ Ins(2,4,5,6)P 4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation.

Original languageEnglish (US)
Pages (from-to)44987-44995
Number of pages9
JournalJournal of Biological Chemistry
Volume279
Issue number43
DOIs
StatePublished - Oct 22 2004
Externally publishedYes

Fingerprint

Polyphosphates
Schizosaccharomyces
Inositol
Substrate Specificity
Phosphoric Monoester Hydrolases
Substrates
Phosphatidylinositols
Inositol Phosphates
Bearings (structural)
Phosphates
Phosphatidylinositol 4,5-Diphosphate
Cell signaling
Enzymes
Bioactivity
src Homology Domains
Synaptic Vesicles
Isomers
Catalysis
Ionization
Transition metals

ASJC Scopus subject areas

  • Biochemistry

Cite this

Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2. / Chi, Yuling; Zhou, Bo; Wang, Wei Qing; Chung, Sung Kee; Kwon, Yong Uk; Ahn, Young Hoon; Chang, Young Tae; Tsujishita, Yosuke; Hurley, James H.; Zhang, Zhong-Yin.

In: Journal of Biological Chemistry, Vol. 279, No. 43, 22.10.2004, p. 44987-44995.

Research output: Contribution to journalArticle

Chi, Yuling ; Zhou, Bo ; Wang, Wei Qing ; Chung, Sung Kee ; Kwon, Yong Uk ; Ahn, Young Hoon ; Chang, Young Tae ; Tsujishita, Yosuke ; Hurley, James H. ; Zhang, Zhong-Yin. / Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2. In: Journal of Biological Chemistry. 2004 ; Vol. 279, No. 43. pp. 44987-44995.
@article{870b5140ec574bb9a591051145d101bc,
title = "Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2",
abstract = "Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co 2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) ≈ Ins(4,5)P2 ≈ Ins(1,4,5)P 3 ≈ Ins(4,5,6)P3 > PtdIns(3,5)P2 ≈ PtdIns(3,4,5)P3 ≈ Ins(1,2,4,5)P4 ≈ Ins(1,3,4,5)P4 ≈ Ins-(2,4,5,6)P4 ≈ Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P 5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 ≈ PtdIns(3,5)P2 ≈ Ins(1,4,5,6)P4 ≈ Ins(2,4,5,6)P 4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation.",
author = "Yuling Chi and Bo Zhou and Wang, {Wei Qing} and Chung, {Sung Kee} and Kwon, {Yong Uk} and Ahn, {Young Hoon} and Chang, {Young Tae} and Yosuke Tsujishita and Hurley, {James H.} and Zhong-Yin Zhang",
year = "2004",
month = "10",
day = "22",
doi = "10.1074/jbc.M406416200",
language = "English (US)",
volume = "279",
pages = "44987--44995",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "43",

}

TY - JOUR

T1 - Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2

AU - Chi, Yuling

AU - Zhou, Bo

AU - Wang, Wei Qing

AU - Chung, Sung Kee

AU - Kwon, Yong Uk

AU - Ahn, Young Hoon

AU - Chang, Young Tae

AU - Tsujishita, Yosuke

AU - Hurley, James H.

AU - Zhang, Zhong-Yin

PY - 2004/10/22

Y1 - 2004/10/22

N2 - Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co 2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) ≈ Ins(4,5)P2 ≈ Ins(1,4,5)P 3 ≈ Ins(4,5,6)P3 > PtdIns(3,5)P2 ≈ PtdIns(3,4,5)P3 ≈ Ins(1,2,4,5)P4 ≈ Ins(1,3,4,5)P4 ≈ Ins-(2,4,5,6)P4 ≈ Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P 5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 ≈ PtdIns(3,5)P2 ≈ Ins(1,4,5,6)P4 ≈ Ins(2,4,5,6)P 4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation.

AB - Inositol-5-phosphatases are important enzymes involved in the regulation of diverse cellular processes from synaptic vesicle recycling to insulin signaling. We describe a comparative study of two representative inositol-5-phosphatases, Schizosaccharomyces pombe synaptojanin (SPsynaptojanin) and human SH2 domain-containing inositol-5-phosphatase SHIP2. We show that in addition to Mg2+, transition metals such as Mn2+, Co 2+, and Ni2+ are also effective activators of SPsynaptojanin. In contrast, Ca2+ and Cu2+ are inhibitory. We provide evidence that Mg2+ binds the same site occupied by Ca2+ observed in the crystal structure of SPsynaptojanin complexed with inositol 1,4-bisphosphate (Ins(1,4)P2). Ionizations important for substrate binding and catalysis are defined for the SPsynaptojanin-catalyzed Ins(1,4,5)P3 reaction. Kinetic analysis with four phosphatidylinositol lipids bearing a 5-phosphate and 54 water-soluble inositol phosphates reveals that SP-synaptojanin and SHIP2 possess much broader substrate specificity than previously appreciated. The rank order for SPsynaptojanin is Ins(2,4,5)P3 > phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) ≈ Ins(4,5)P2 ≈ Ins(1,4,5)P 3 ≈ Ins(4,5,6)P3 > PtdIns(3,5)P2 ≈ PtdIns(3,4,5)P3 ≈ Ins(1,2,4,5)P4 ≈ Ins(1,3,4,5)P4 ≈ Ins-(2,4,5,6)P4 ≈ Ins(1,2,4,5,6)P5. The rank order for SHIP2 is Ins(1,2,3,4,5)P 5 > Ins(1,3,4,5)P4 > PtdIns(3,4,5)P4 ≈ PtdIns(3,5)P2 ≈ Ins(1,4,5,6)P4 ≈ Ins(2,4,5,6)P 4. Because inositol phosphate isomers elicit different biological activities, the extended substrate specificity for SPsynaptojanin and SHIP2 suggest that these enzymes likely have multiple roles in cell signaling and may regulate distinct pathways. The unique substrate specificity profiles and the importance of 2-position phosphate in binding also have important implications for the design of potent and selective SPsynaptojanin and SHIP2 inhibitors for pharmacological investigation.

UR - http://www.scopus.com/inward/record.url?scp=7244226331&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=7244226331&partnerID=8YFLogxK

U2 - 10.1074/jbc.M406416200

DO - 10.1074/jbc.M406416200

M3 - Article

VL - 279

SP - 44987

EP - 44995

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 43

ER -