Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs

Peng-Sheng Chen, P. D. Wolf, S. D. Melnick, N. D. Danieley, W. M. Smith, R. E. Ideker

Research output: Contribution to journalArticle

108 Citations (Scopus)

Abstract

The purpose of this study was to map in detail the spread of activation away from sites of early postshock excitation following unsuccessful defibrillation to determine whether these activation fronts are the unaltered continuation of activation fronts present just before the shock. We recorded simultaneously from 120 bipolar electrodes on 40 plunge needles in an 20 x 35 x 5-mm volume of tissue of the right ventricular outflow tract immediately before and after shocks of 190-350 V were given via electrodes on the right atrium and left ventricular apex to six open-chest dogs with electrically induced ventricular fibrillation. For 20 shocks approximately 100 V below the defibrillation threshold, the site of earliest recorded activation following the shock was near the center of the mapped region. At the earliest recorded activation sites, there was an isoelectric window in the immediate postshock period lasting 42 ± 15 msec after which activation fronts either spread away from a site in all directions in a focal pattern (12 episodes) or else spread away in only one direction (eight episodes). Comparison of activation patterns immediately before and after the shock revealed that in 18 of the 20 episodes, the location and pathway of activation fronts after the shock were markedly different from those before the shock. The preshock intervals at the sites of earliest activation following the shock, that is, the interval between the last activation at the site and the time of the shock, were not randomly distributed but were similar, averaging 64 ± 11 msec, and were negatively correlated with the isoelectric postshock window (r = -0.70, p = 0.0001). These findings indicate that the presence and the site of origin of activation fronts after the shock are influenced by at least two factors: the shock itself and the electrophysiological state of the myocardium at the time of the shock. Thus, epicardial shocks approximately 100 V below the defibrillation threshold markedly alter the activation sequences of fibrillation but are unsuccessful because the activation fronts following the shock reinitiate fibrillation.

Original languageEnglish (US)
Pages (from-to)1544-1560
Number of pages17
JournalCirculation Research
Volume66
Issue number6
StatePublished - 1990
Externally publishedYes

Fingerprint

Ventricular Fibrillation
Shock
Thorax
Dogs
Electrodes
Heart Atria
Needles
Myocardium

Keywords

  • computerized mapping
  • defibrillation
  • graded response
  • ventricular fibrillation
  • vulnerability

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Chen, P-S., Wolf, P. D., Melnick, S. D., Danieley, N. D., Smith, W. M., & Ideker, R. E. (1990). Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs. Circulation Research, 66(6), 1544-1560.

Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs. / Chen, Peng-Sheng; Wolf, P. D.; Melnick, S. D.; Danieley, N. D.; Smith, W. M.; Ideker, R. E.

In: Circulation Research, Vol. 66, No. 6, 1990, p. 1544-1560.

Research output: Contribution to journalArticle

Chen, P-S, Wolf, PD, Melnick, SD, Danieley, ND, Smith, WM & Ideker, RE 1990, 'Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs', Circulation Research, vol. 66, no. 6, pp. 1544-1560.
Chen, Peng-Sheng ; Wolf, P. D. ; Melnick, S. D. ; Danieley, N. D. ; Smith, W. M. ; Ideker, R. E. / Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs. In: Circulation Research. 1990 ; Vol. 66, No. 6. pp. 1544-1560.
@article{f1523c8f9fa54940bac42a9ce6bb3643,
title = "Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs",
abstract = "The purpose of this study was to map in detail the spread of activation away from sites of early postshock excitation following unsuccessful defibrillation to determine whether these activation fronts are the unaltered continuation of activation fronts present just before the shock. We recorded simultaneously from 120 bipolar electrodes on 40 plunge needles in an 20 x 35 x 5-mm volume of tissue of the right ventricular outflow tract immediately before and after shocks of 190-350 V were given via electrodes on the right atrium and left ventricular apex to six open-chest dogs with electrically induced ventricular fibrillation. For 20 shocks approximately 100 V below the defibrillation threshold, the site of earliest recorded activation following the shock was near the center of the mapped region. At the earliest recorded activation sites, there was an isoelectric window in the immediate postshock period lasting 42 ± 15 msec after which activation fronts either spread away from a site in all directions in a focal pattern (12 episodes) or else spread away in only one direction (eight episodes). Comparison of activation patterns immediately before and after the shock revealed that in 18 of the 20 episodes, the location and pathway of activation fronts after the shock were markedly different from those before the shock. The preshock intervals at the sites of earliest activation following the shock, that is, the interval between the last activation at the site and the time of the shock, were not randomly distributed but were similar, averaging 64 ± 11 msec, and were negatively correlated with the isoelectric postshock window (r = -0.70, p = 0.0001). These findings indicate that the presence and the site of origin of activation fronts after the shock are influenced by at least two factors: the shock itself and the electrophysiological state of the myocardium at the time of the shock. Thus, epicardial shocks approximately 100 V below the defibrillation threshold markedly alter the activation sequences of fibrillation but are unsuccessful because the activation fronts following the shock reinitiate fibrillation.",
keywords = "computerized mapping, defibrillation, graded response, ventricular fibrillation, vulnerability",
author = "Peng-Sheng Chen and Wolf, {P. D.} and Melnick, {S. D.} and Danieley, {N. D.} and Smith, {W. M.} and Ideker, {R. E.}",
year = "1990",
language = "English (US)",
volume = "66",
pages = "1544--1560",
journal = "Circulation Research",
issn = "0009-7330",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open-chest dogs

AU - Chen, Peng-Sheng

AU - Wolf, P. D.

AU - Melnick, S. D.

AU - Danieley, N. D.

AU - Smith, W. M.

AU - Ideker, R. E.

PY - 1990

Y1 - 1990

N2 - The purpose of this study was to map in detail the spread of activation away from sites of early postshock excitation following unsuccessful defibrillation to determine whether these activation fronts are the unaltered continuation of activation fronts present just before the shock. We recorded simultaneously from 120 bipolar electrodes on 40 plunge needles in an 20 x 35 x 5-mm volume of tissue of the right ventricular outflow tract immediately before and after shocks of 190-350 V were given via electrodes on the right atrium and left ventricular apex to six open-chest dogs with electrically induced ventricular fibrillation. For 20 shocks approximately 100 V below the defibrillation threshold, the site of earliest recorded activation following the shock was near the center of the mapped region. At the earliest recorded activation sites, there was an isoelectric window in the immediate postshock period lasting 42 ± 15 msec after which activation fronts either spread away from a site in all directions in a focal pattern (12 episodes) or else spread away in only one direction (eight episodes). Comparison of activation patterns immediately before and after the shock revealed that in 18 of the 20 episodes, the location and pathway of activation fronts after the shock were markedly different from those before the shock. The preshock intervals at the sites of earliest activation following the shock, that is, the interval between the last activation at the site and the time of the shock, were not randomly distributed but were similar, averaging 64 ± 11 msec, and were negatively correlated with the isoelectric postshock window (r = -0.70, p = 0.0001). These findings indicate that the presence and the site of origin of activation fronts after the shock are influenced by at least two factors: the shock itself and the electrophysiological state of the myocardium at the time of the shock. Thus, epicardial shocks approximately 100 V below the defibrillation threshold markedly alter the activation sequences of fibrillation but are unsuccessful because the activation fronts following the shock reinitiate fibrillation.

AB - The purpose of this study was to map in detail the spread of activation away from sites of early postshock excitation following unsuccessful defibrillation to determine whether these activation fronts are the unaltered continuation of activation fronts present just before the shock. We recorded simultaneously from 120 bipolar electrodes on 40 plunge needles in an 20 x 35 x 5-mm volume of tissue of the right ventricular outflow tract immediately before and after shocks of 190-350 V were given via electrodes on the right atrium and left ventricular apex to six open-chest dogs with electrically induced ventricular fibrillation. For 20 shocks approximately 100 V below the defibrillation threshold, the site of earliest recorded activation following the shock was near the center of the mapped region. At the earliest recorded activation sites, there was an isoelectric window in the immediate postshock period lasting 42 ± 15 msec after which activation fronts either spread away from a site in all directions in a focal pattern (12 episodes) or else spread away in only one direction (eight episodes). Comparison of activation patterns immediately before and after the shock revealed that in 18 of the 20 episodes, the location and pathway of activation fronts after the shock were markedly different from those before the shock. The preshock intervals at the sites of earliest activation following the shock, that is, the interval between the last activation at the site and the time of the shock, were not randomly distributed but were similar, averaging 64 ± 11 msec, and were negatively correlated with the isoelectric postshock window (r = -0.70, p = 0.0001). These findings indicate that the presence and the site of origin of activation fronts after the shock are influenced by at least two factors: the shock itself and the electrophysiological state of the myocardium at the time of the shock. Thus, epicardial shocks approximately 100 V below the defibrillation threshold markedly alter the activation sequences of fibrillation but are unsuccessful because the activation fronts following the shock reinitiate fibrillation.

KW - computerized mapping

KW - defibrillation

KW - graded response

KW - ventricular fibrillation

KW - vulnerability

UR - http://www.scopus.com/inward/record.url?scp=0025277643&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025277643&partnerID=8YFLogxK

M3 - Article

VL - 66

SP - 1544

EP - 1560

JO - Circulation Research

JF - Circulation Research

SN - 0009-7330

IS - 6

ER -