Comparison of beam characteristics in intensity modulated radiation therapy (IMRT) and those under normal treatment condition

C. W. Cheng, I. J. Das

Research output: Contribution to journalArticle

27 Scopus citations


In the step-and-shoot delivery of an IMRT plan with a Siemens Primus accelerator, radiation is turned off by desynchronizing the injector while the field parameters are being changed. When the machine is ready again a trigger pulse is sent to the injector to start the beam instantaneously. The objective of this study is to investigate the beam characteristics of the machine operating in the IMRT mode and to study the effect of the Initial Pulse Forming Network (IPEN) on the dark current. The central axis (CAX) output for a 10 × 10 cm2 field over the range 1-100 MU was measured with an ion chamber in a polystyrene phantom for both 6 and 15 MV x rays. Beam profiles were also measured over the range of 2-40 MU with the machine operating in the IMRT mode and compared with those in the normal mode. By adjusting the IPFN value, dark current radiation (DCR) was measured using ion chamber measurements. For both the normal and IMRT modes, dose versus MU is nonlinear in the range 1-5 MUs. Above 5 MU, dose varies linearly with MU for both 6 and 15 MV x rays. For stability of dose profiles, the 2 MU-IM group exhibit 20% variation from one subfield to another. The variation is about 5% for the 8 MU-IM group and <5% for 10 MU and higher. The results are similar in the normal treatment mode. With the IPFN at >80% of the PFN value, a spurious radiation associated with dark current at approximately 0.7% of the dose at isocenter for a 10 × 10 cm2 field is detected during the "PAUSE" state of the accelerator for 15 MV x rays. When the IPFN is lowered to <80% of the PFN value, no DCR is detected. For 6 MV x rays, no measurable DCR was detected regardless of the IPFN setting.

Original languageEnglish (US)
Pages (from-to)226-230
Number of pages5
JournalMedical physics
Issue number2
StatePublished - Jan 1 2002



  • Beam characteristics
  • Dark current radiation
  • Dose linearity
  • IMRT

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this