Comparison of isoflurane and α-chloralose in an anesthetized swine model of acute pulmonary embolism producing right ventricular dysfunction

Daren Beam, Evandro M. Neto-Neves, William B. Stubblefield, Nathan Alves, Johnathan Tune, Jeffrey Kline

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Pulmonary embolism (PE) is a leading cause of sudden cardiac death, and a model is needed for testing potential treatments. In developing a model, we compared the hemodynamic effects of isoflurane and α-chloralose in an acute swine model of PE because the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. At baseline, swine that received α-chloralose (n = 6) had a lower heart rate and cardiac output and higher SpO2, end-tidal CO2, and mean arterial pressure than did those given isoflurane (n = 9). After PE induction, swine given α-chloralose compared with isoflurane exhibited a lower heart rate (63 ± 10 compared with 116 ± 15 bpm) and peripheral arterial pressure (52 ± 12 compared with 61 ± 12 mm Hg); higher SpO2 (98% ± 3% compared with 95% ± 1%), end-tidal CO2 (35 ± 4 compared with 32 ± 5), and systolic blood pressure (121 ± 8 compared with 104 ± 20 mm Hg); and equivalent right ventricular:left ventricular ratios (1.32 ± 0.50 compared with 1.23 ± 0.19) and troponin I mean values (0.09 ± 0.07 ng/mL compared with 0.09 ± 0.06 ng/mL). Isoflurane was associated with widely variable fibrinogen and activated partial thromboplastin time. Intraexperiment mortality was 0 of 6 animals for α-chloralose and 2 of 9 swine for isoflurane. All swine anesthetized with α-chloralose survived with sustained pulmonary hypertension, RV-dilation-associated cardiac injury without the confounding vasodilatory or coagulatory effects of isoflurane. These data demonstrate the physiologic advantages of α-chloralose over isoflurane for anesthesia in a swine model of severe submassive PE.

Original languageEnglish
Pages (from-to)54-61
Number of pages8
JournalComparative Medicine
Volume65
Issue number1
StatePublished - Feb 1 2015

Fingerprint

chloralose
Right Ventricular Dysfunction
Chloralose
embolism
Isoflurane
isoflurane
Pulmonary Embolism
Swine
lungs
swine
heart rate
anesthesia
Arterial Pressure
Animals
Anesthesia
Heart Rate
High Cardiac Output
Blood Pressure
thromboplastin
Troponin I

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • veterinary(all)

Cite this

Comparison of isoflurane and α-chloralose in an anesthetized swine model of acute pulmonary embolism producing right ventricular dysfunction. / Beam, Daren; Neto-Neves, Evandro M.; Stubblefield, William B.; Alves, Nathan; Tune, Johnathan; Kline, Jeffrey.

In: Comparative Medicine, Vol. 65, No. 1, 01.02.2015, p. 54-61.

Research output: Contribution to journalArticle

@article{062c8c5526ab41109f9ccd7b4e0eb4c1,
title = "Comparison of isoflurane and α-chloralose in an anesthetized swine model of acute pulmonary embolism producing right ventricular dysfunction",
abstract = "Pulmonary embolism (PE) is a leading cause of sudden cardiac death, and a model is needed for testing potential treatments. In developing a model, we compared the hemodynamic effects of isoflurane and α-chloralose in an acute swine model of PE because the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. At baseline, swine that received α-chloralose (n = 6) had a lower heart rate and cardiac output and higher SpO2, end-tidal CO2, and mean arterial pressure than did those given isoflurane (n = 9). After PE induction, swine given α-chloralose compared with isoflurane exhibited a lower heart rate (63 ± 10 compared with 116 ± 15 bpm) and peripheral arterial pressure (52 ± 12 compared with 61 ± 12 mm Hg); higher SpO2 (98{\%} ± 3{\%} compared with 95{\%} ± 1{\%}), end-tidal CO2 (35 ± 4 compared with 32 ± 5), and systolic blood pressure (121 ± 8 compared with 104 ± 20 mm Hg); and equivalent right ventricular:left ventricular ratios (1.32 ± 0.50 compared with 1.23 ± 0.19) and troponin I mean values (0.09 ± 0.07 ng/mL compared with 0.09 ± 0.06 ng/mL). Isoflurane was associated with widely variable fibrinogen and activated partial thromboplastin time. Intraexperiment mortality was 0 of 6 animals for α-chloralose and 2 of 9 swine for isoflurane. All swine anesthetized with α-chloralose survived with sustained pulmonary hypertension, RV-dilation-associated cardiac injury without the confounding vasodilatory or coagulatory effects of isoflurane. These data demonstrate the physiologic advantages of α-chloralose over isoflurane for anesthesia in a swine model of severe submassive PE.",
author = "Daren Beam and Neto-Neves, {Evandro M.} and Stubblefield, {William B.} and Nathan Alves and Johnathan Tune and Jeffrey Kline",
year = "2015",
month = "2",
day = "1",
language = "English",
volume = "65",
pages = "54--61",
journal = "Comparative Medicine",
issn = "1532-0820",
publisher = "American Association for Laboratory Animal Science",
number = "1",

}

TY - JOUR

T1 - Comparison of isoflurane and α-chloralose in an anesthetized swine model of acute pulmonary embolism producing right ventricular dysfunction

AU - Beam, Daren

AU - Neto-Neves, Evandro M.

AU - Stubblefield, William B.

AU - Alves, Nathan

AU - Tune, Johnathan

AU - Kline, Jeffrey

PY - 2015/2/1

Y1 - 2015/2/1

N2 - Pulmonary embolism (PE) is a leading cause of sudden cardiac death, and a model is needed for testing potential treatments. In developing a model, we compared the hemodynamic effects of isoflurane and α-chloralose in an acute swine model of PE because the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. At baseline, swine that received α-chloralose (n = 6) had a lower heart rate and cardiac output and higher SpO2, end-tidal CO2, and mean arterial pressure than did those given isoflurane (n = 9). After PE induction, swine given α-chloralose compared with isoflurane exhibited a lower heart rate (63 ± 10 compared with 116 ± 15 bpm) and peripheral arterial pressure (52 ± 12 compared with 61 ± 12 mm Hg); higher SpO2 (98% ± 3% compared with 95% ± 1%), end-tidal CO2 (35 ± 4 compared with 32 ± 5), and systolic blood pressure (121 ± 8 compared with 104 ± 20 mm Hg); and equivalent right ventricular:left ventricular ratios (1.32 ± 0.50 compared with 1.23 ± 0.19) and troponin I mean values (0.09 ± 0.07 ng/mL compared with 0.09 ± 0.06 ng/mL). Isoflurane was associated with widely variable fibrinogen and activated partial thromboplastin time. Intraexperiment mortality was 0 of 6 animals for α-chloralose and 2 of 9 swine for isoflurane. All swine anesthetized with α-chloralose survived with sustained pulmonary hypertension, RV-dilation-associated cardiac injury without the confounding vasodilatory or coagulatory effects of isoflurane. These data demonstrate the physiologic advantages of α-chloralose over isoflurane for anesthesia in a swine model of severe submassive PE.

AB - Pulmonary embolism (PE) is a leading cause of sudden cardiac death, and a model is needed for testing potential treatments. In developing a model, we compared the hemodynamic effects of isoflurane and α-chloralose in an acute swine model of PE because the choice of anesthesia will likely affect the cardiovascular responses of an animal to PE. At baseline, swine that received α-chloralose (n = 6) had a lower heart rate and cardiac output and higher SpO2, end-tidal CO2, and mean arterial pressure than did those given isoflurane (n = 9). After PE induction, swine given α-chloralose compared with isoflurane exhibited a lower heart rate (63 ± 10 compared with 116 ± 15 bpm) and peripheral arterial pressure (52 ± 12 compared with 61 ± 12 mm Hg); higher SpO2 (98% ± 3% compared with 95% ± 1%), end-tidal CO2 (35 ± 4 compared with 32 ± 5), and systolic blood pressure (121 ± 8 compared with 104 ± 20 mm Hg); and equivalent right ventricular:left ventricular ratios (1.32 ± 0.50 compared with 1.23 ± 0.19) and troponin I mean values (0.09 ± 0.07 ng/mL compared with 0.09 ± 0.06 ng/mL). Isoflurane was associated with widely variable fibrinogen and activated partial thromboplastin time. Intraexperiment mortality was 0 of 6 animals for α-chloralose and 2 of 9 swine for isoflurane. All swine anesthetized with α-chloralose survived with sustained pulmonary hypertension, RV-dilation-associated cardiac injury without the confounding vasodilatory or coagulatory effects of isoflurane. These data demonstrate the physiologic advantages of α-chloralose over isoflurane for anesthesia in a swine model of severe submassive PE.

UR - http://www.scopus.com/inward/record.url?scp=84924940135&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84924940135&partnerID=8YFLogxK

M3 - Article

VL - 65

SP - 54

EP - 61

JO - Comparative Medicine

JF - Comparative Medicine

SN - 1532-0820

IS - 1

ER -