Coronary occlusion and reperfusion promote early afterdepolarizations and ventricular tachycardia in a canine tissue model of type 3 long QT syndrome

Norihiro Ueda, Douglas P. Zipes, Jiashin Wu

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Although long QT syndrome (LQTS) and coronary occlusion-reperfusion (O/R) are arrhythmogenic, they affect ventricular action potential duration (APD) differently. In contrast to the prolonged APD in LQTS, ischemia abbreviates APD after a transient prolongation. Thus we hypothesized that the dynamic interactive effects of ischemia and LQTS on APD and its dispersion would affect ventricular arrhythmogenicity. We mapped transmural distribution of action potentials in 6 groups of 10 isolated wedges of canine ventricular walls: LQTS-O/R, LQTS only, and O/R only, with separate groups for pacing cycle lengths (PCL) of 1,000 and 2,000 ms. We created type 3 LQTS with anemone toxin (ATX) II followed >30 min later by arterial occlusion (40 min) and reperfusion (>100 min). Arterial occlusion initially (first 4 min) prolonged and then shortened APD. Early afterdepolarizations (EADs) occurred during the initial 4 min of occlusion in 4 of the 10 LQTS-O/R wedges at PCL of 2,000 ms but not in the other groups. Reperfusion restored APD in the O/R-only groups but caused APD to overshoot its original duration, indicating depressed repolarization reserve, in the LQTS-O/R group. Reperfusion increased the dispersion of APDs and initiated ventricular tachycardia-fibrillation in 7 of 10 and 6 of 10 LQTS-O/R wedges and in 2 of 10 and 1 of 10 O/R-only wedges at PCLs of 1,000 and 2,000 ms, respectively. The LQTS-only wedges exhibited neither EADs nor ventricular tachycardia. We conclude that coronary O/R increased the arrhythmogenicity of LQTS via cumulative prolongation of APD, increase in repolarization dispersion, and suppression of repolarization reserve.

Original languageEnglish
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume290
Issue number2
DOIs
StatePublished - Feb 2006

Fingerprint

Long QT Syndrome
Myocardial Reperfusion
Coronary Occlusion
Ventricular Tachycardia
Reperfusion
Canidae
Action Potentials
pamidronate
Ischemia
Anemone
Long QT syndrome type 3
Ventricular Fibrillation

Keywords

  • Arrhythmias
  • Ischemia
  • Repolarization reserve

ASJC Scopus subject areas

  • Physiology

Cite this

@article{0371b39484444d46912c80cdb8ae8d12,
title = "Coronary occlusion and reperfusion promote early afterdepolarizations and ventricular tachycardia in a canine tissue model of type 3 long QT syndrome",
abstract = "Although long QT syndrome (LQTS) and coronary occlusion-reperfusion (O/R) are arrhythmogenic, they affect ventricular action potential duration (APD) differently. In contrast to the prolonged APD in LQTS, ischemia abbreviates APD after a transient prolongation. Thus we hypothesized that the dynamic interactive effects of ischemia and LQTS on APD and its dispersion would affect ventricular arrhythmogenicity. We mapped transmural distribution of action potentials in 6 groups of 10 isolated wedges of canine ventricular walls: LQTS-O/R, LQTS only, and O/R only, with separate groups for pacing cycle lengths (PCL) of 1,000 and 2,000 ms. We created type 3 LQTS with anemone toxin (ATX) II followed >30 min later by arterial occlusion (40 min) and reperfusion (>100 min). Arterial occlusion initially (first 4 min) prolonged and then shortened APD. Early afterdepolarizations (EADs) occurred during the initial 4 min of occlusion in 4 of the 10 LQTS-O/R wedges at PCL of 2,000 ms but not in the other groups. Reperfusion restored APD in the O/R-only groups but caused APD to overshoot its original duration, indicating depressed repolarization reserve, in the LQTS-O/R group. Reperfusion increased the dispersion of APDs and initiated ventricular tachycardia-fibrillation in 7 of 10 and 6 of 10 LQTS-O/R wedges and in 2 of 10 and 1 of 10 O/R-only wedges at PCLs of 1,000 and 2,000 ms, respectively. The LQTS-only wedges exhibited neither EADs nor ventricular tachycardia. We conclude that coronary O/R increased the arrhythmogenicity of LQTS via cumulative prolongation of APD, increase in repolarization dispersion, and suppression of repolarization reserve.",
keywords = "Arrhythmias, Ischemia, Repolarization reserve",
author = "Norihiro Ueda and Zipes, {Douglas P.} and Jiashin Wu",
year = "2006",
month = "2",
doi = "10.1152/ajpheart.00699.2005",
language = "English",
volume = "290",
journal = "American Journal of Physiology",
issn = "0193-1857",
publisher = "American Physiological Society",
number = "2",

}

TY - JOUR

T1 - Coronary occlusion and reperfusion promote early afterdepolarizations and ventricular tachycardia in a canine tissue model of type 3 long QT syndrome

AU - Ueda, Norihiro

AU - Zipes, Douglas P.

AU - Wu, Jiashin

PY - 2006/2

Y1 - 2006/2

N2 - Although long QT syndrome (LQTS) and coronary occlusion-reperfusion (O/R) are arrhythmogenic, they affect ventricular action potential duration (APD) differently. In contrast to the prolonged APD in LQTS, ischemia abbreviates APD after a transient prolongation. Thus we hypothesized that the dynamic interactive effects of ischemia and LQTS on APD and its dispersion would affect ventricular arrhythmogenicity. We mapped transmural distribution of action potentials in 6 groups of 10 isolated wedges of canine ventricular walls: LQTS-O/R, LQTS only, and O/R only, with separate groups for pacing cycle lengths (PCL) of 1,000 and 2,000 ms. We created type 3 LQTS with anemone toxin (ATX) II followed >30 min later by arterial occlusion (40 min) and reperfusion (>100 min). Arterial occlusion initially (first 4 min) prolonged and then shortened APD. Early afterdepolarizations (EADs) occurred during the initial 4 min of occlusion in 4 of the 10 LQTS-O/R wedges at PCL of 2,000 ms but not in the other groups. Reperfusion restored APD in the O/R-only groups but caused APD to overshoot its original duration, indicating depressed repolarization reserve, in the LQTS-O/R group. Reperfusion increased the dispersion of APDs and initiated ventricular tachycardia-fibrillation in 7 of 10 and 6 of 10 LQTS-O/R wedges and in 2 of 10 and 1 of 10 O/R-only wedges at PCLs of 1,000 and 2,000 ms, respectively. The LQTS-only wedges exhibited neither EADs nor ventricular tachycardia. We conclude that coronary O/R increased the arrhythmogenicity of LQTS via cumulative prolongation of APD, increase in repolarization dispersion, and suppression of repolarization reserve.

AB - Although long QT syndrome (LQTS) and coronary occlusion-reperfusion (O/R) are arrhythmogenic, they affect ventricular action potential duration (APD) differently. In contrast to the prolonged APD in LQTS, ischemia abbreviates APD after a transient prolongation. Thus we hypothesized that the dynamic interactive effects of ischemia and LQTS on APD and its dispersion would affect ventricular arrhythmogenicity. We mapped transmural distribution of action potentials in 6 groups of 10 isolated wedges of canine ventricular walls: LQTS-O/R, LQTS only, and O/R only, with separate groups for pacing cycle lengths (PCL) of 1,000 and 2,000 ms. We created type 3 LQTS with anemone toxin (ATX) II followed >30 min later by arterial occlusion (40 min) and reperfusion (>100 min). Arterial occlusion initially (first 4 min) prolonged and then shortened APD. Early afterdepolarizations (EADs) occurred during the initial 4 min of occlusion in 4 of the 10 LQTS-O/R wedges at PCL of 2,000 ms but not in the other groups. Reperfusion restored APD in the O/R-only groups but caused APD to overshoot its original duration, indicating depressed repolarization reserve, in the LQTS-O/R group. Reperfusion increased the dispersion of APDs and initiated ventricular tachycardia-fibrillation in 7 of 10 and 6 of 10 LQTS-O/R wedges and in 2 of 10 and 1 of 10 O/R-only wedges at PCLs of 1,000 and 2,000 ms, respectively. The LQTS-only wedges exhibited neither EADs nor ventricular tachycardia. We conclude that coronary O/R increased the arrhythmogenicity of LQTS via cumulative prolongation of APD, increase in repolarization dispersion, and suppression of repolarization reserve.

KW - Arrhythmias

KW - Ischemia

KW - Repolarization reserve

UR - http://www.scopus.com/inward/record.url?scp=33644868941&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644868941&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00699.2005

DO - 10.1152/ajpheart.00699.2005

M3 - Article

C2 - 16172158

AN - SCOPUS:33644868941

VL - 290

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0193-1857

IS - 2

ER -