Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells

W. F. Graier, S. Simecek, Michael Sturek

Research output: Contribution to journalArticle

205 Citations (Scopus)

Abstract

1. We tested the hypothesis that agonist-stimulated Ca2+ entry, and thus formation of endothelium-derived nitric oxide (EDNO) in vascular endothelial cells, is related to activation of microsomal P450 mono-oxygenase (P450 MO) and the biosynthesis of 5,6-epoxyeicosatrienoic acid (5,6-EET). 2. Several P450 inhibitors diminished the sustained [Ca2+](i) plateau response to agonist or intracellular Ca2+ store depletion with ATPase inhibitors by 31-69% (fura-2 technique). Mn2+ influx stimulated by agonists or ATPase inhibitors was prevented by P450 inhibitors. 3. Histamine- or ATPase inhibitor-stimulated formation of EDNO was strongly attenuated (50-83%) by P450 inhibitors, without any effect on EDNO formation by the Ca2+ ionophore A23187, indicating that decreased EDNO synthesis is due specifically to the inhibition of Ca2+ entry by these compounds. 4. Induction of P450 MO by β-naphthoflavone potentiated agonist-induced Ca2+ and Mn2+ influx by 60 and 53%, respectively. Intracellular Ca2+ release remained unchanged. 5. The P450 MO product, 5,6-EET (<156 nmol l-1), activated Ca2+/Mn2+ entry without any depletion of intracellular Ca2+ stores. The 5,6-EET-stimulated Ca2+/Mn2+ entry was not affected by P450 inhibitors. 6. As with the bradykinin-stimulated Ca2+ entry pathway, the 5,6-EET-activated Ca2+ entry pathway was permeable to Mn2+ and Ba2+, sensitive to Ni2+, La3+ and membrane depolarization, and insensitive to the removal of extracellular Na+ or the organic Ca2+ antagonist, nitrendipine. 7. In the presence of 5,6-EET, stimulation with bradykinin only transiently increased [Ca2+](i). Vice versa, 5,6-EET failed to increase [Ca2+](i) further in bradykinin-stimulated cells. The sustained [Ca2+](i) plateau phase induced by a co-stimulation with bradykinin and 5,6-EET was identical to that observed with bradykinin or 5,6-EET alone. 8. These results demonstrate that Ca2+ entry induced by the P450 MO product, 5,6-EET, is indistinguishable to that observed by stimulation with bradykinin. 9. All data support our hypothesis that depletion of endothelial Ca2+ stores activates microsomal P450 MO which in turn synthesizes 5,6-EET. We propose that the arachidonic acid metabolite 5,6-EET or one of its metabolites is a second messenger for activation of endothelial Ca2+ entry.

Original languageEnglish (US)
Pages (from-to)259-274
Number of pages16
JournalJournal of Physiology
Volume482
Issue number2
StatePublished - 1995
Externally publishedYes

Fingerprint

Oxygenases
Cytochrome P-450 Enzyme System
Endothelial Cells
Bradykinin
Nitric Oxide
Adenosine Triphosphatases
5,6-epoxy-8,11,14-eicosatrienoic acid
Nitrendipine
Fura-2
Ionophores
Calcimycin
Second Messenger Systems
Arachidonic Acid
Histamine

ASJC Scopus subject areas

  • Physiology

Cite this

Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. / Graier, W. F.; Simecek, S.; Sturek, Michael.

In: Journal of Physiology, Vol. 482, No. 2, 1995, p. 259-274.

Research output: Contribution to journalArticle

@article{82744621721f4c7a92c3822de3956d4f,
title = "Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells",
abstract = "1. We tested the hypothesis that agonist-stimulated Ca2+ entry, and thus formation of endothelium-derived nitric oxide (EDNO) in vascular endothelial cells, is related to activation of microsomal P450 mono-oxygenase (P450 MO) and the biosynthesis of 5,6-epoxyeicosatrienoic acid (5,6-EET). 2. Several P450 inhibitors diminished the sustained [Ca2+](i) plateau response to agonist or intracellular Ca2+ store depletion with ATPase inhibitors by 31-69{\%} (fura-2 technique). Mn2+ influx stimulated by agonists or ATPase inhibitors was prevented by P450 inhibitors. 3. Histamine- or ATPase inhibitor-stimulated formation of EDNO was strongly attenuated (50-83{\%}) by P450 inhibitors, without any effect on EDNO formation by the Ca2+ ionophore A23187, indicating that decreased EDNO synthesis is due specifically to the inhibition of Ca2+ entry by these compounds. 4. Induction of P450 MO by β-naphthoflavone potentiated agonist-induced Ca2+ and Mn2+ influx by 60 and 53{\%}, respectively. Intracellular Ca2+ release remained unchanged. 5. The P450 MO product, 5,6-EET (<156 nmol l-1), activated Ca2+/Mn2+ entry without any depletion of intracellular Ca2+ stores. The 5,6-EET-stimulated Ca2+/Mn2+ entry was not affected by P450 inhibitors. 6. As with the bradykinin-stimulated Ca2+ entry pathway, the 5,6-EET-activated Ca2+ entry pathway was permeable to Mn2+ and Ba2+, sensitive to Ni2+, La3+ and membrane depolarization, and insensitive to the removal of extracellular Na+ or the organic Ca2+ antagonist, nitrendipine. 7. In the presence of 5,6-EET, stimulation with bradykinin only transiently increased [Ca2+](i). Vice versa, 5,6-EET failed to increase [Ca2+](i) further in bradykinin-stimulated cells. The sustained [Ca2+](i) plateau phase induced by a co-stimulation with bradykinin and 5,6-EET was identical to that observed with bradykinin or 5,6-EET alone. 8. These results demonstrate that Ca2+ entry induced by the P450 MO product, 5,6-EET, is indistinguishable to that observed by stimulation with bradykinin. 9. All data support our hypothesis that depletion of endothelial Ca2+ stores activates microsomal P450 MO which in turn synthesizes 5,6-EET. We propose that the arachidonic acid metabolite 5,6-EET or one of its metabolites is a second messenger for activation of endothelial Ca2+ entry.",
author = "Graier, {W. F.} and S. Simecek and Michael Sturek",
year = "1995",
language = "English (US)",
volume = "482",
pages = "259--274",
journal = "Journal of Physiology",
issn = "0022-3751",
publisher = "Wiley-Blackwell",
number = "2",

}

TY - JOUR

T1 - Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells

AU - Graier, W. F.

AU - Simecek, S.

AU - Sturek, Michael

PY - 1995

Y1 - 1995

N2 - 1. We tested the hypothesis that agonist-stimulated Ca2+ entry, and thus formation of endothelium-derived nitric oxide (EDNO) in vascular endothelial cells, is related to activation of microsomal P450 mono-oxygenase (P450 MO) and the biosynthesis of 5,6-epoxyeicosatrienoic acid (5,6-EET). 2. Several P450 inhibitors diminished the sustained [Ca2+](i) plateau response to agonist or intracellular Ca2+ store depletion with ATPase inhibitors by 31-69% (fura-2 technique). Mn2+ influx stimulated by agonists or ATPase inhibitors was prevented by P450 inhibitors. 3. Histamine- or ATPase inhibitor-stimulated formation of EDNO was strongly attenuated (50-83%) by P450 inhibitors, without any effect on EDNO formation by the Ca2+ ionophore A23187, indicating that decreased EDNO synthesis is due specifically to the inhibition of Ca2+ entry by these compounds. 4. Induction of P450 MO by β-naphthoflavone potentiated agonist-induced Ca2+ and Mn2+ influx by 60 and 53%, respectively. Intracellular Ca2+ release remained unchanged. 5. The P450 MO product, 5,6-EET (<156 nmol l-1), activated Ca2+/Mn2+ entry without any depletion of intracellular Ca2+ stores. The 5,6-EET-stimulated Ca2+/Mn2+ entry was not affected by P450 inhibitors. 6. As with the bradykinin-stimulated Ca2+ entry pathway, the 5,6-EET-activated Ca2+ entry pathway was permeable to Mn2+ and Ba2+, sensitive to Ni2+, La3+ and membrane depolarization, and insensitive to the removal of extracellular Na+ or the organic Ca2+ antagonist, nitrendipine. 7. In the presence of 5,6-EET, stimulation with bradykinin only transiently increased [Ca2+](i). Vice versa, 5,6-EET failed to increase [Ca2+](i) further in bradykinin-stimulated cells. The sustained [Ca2+](i) plateau phase induced by a co-stimulation with bradykinin and 5,6-EET was identical to that observed with bradykinin or 5,6-EET alone. 8. These results demonstrate that Ca2+ entry induced by the P450 MO product, 5,6-EET, is indistinguishable to that observed by stimulation with bradykinin. 9. All data support our hypothesis that depletion of endothelial Ca2+ stores activates microsomal P450 MO which in turn synthesizes 5,6-EET. We propose that the arachidonic acid metabolite 5,6-EET or one of its metabolites is a second messenger for activation of endothelial Ca2+ entry.

AB - 1. We tested the hypothesis that agonist-stimulated Ca2+ entry, and thus formation of endothelium-derived nitric oxide (EDNO) in vascular endothelial cells, is related to activation of microsomal P450 mono-oxygenase (P450 MO) and the biosynthesis of 5,6-epoxyeicosatrienoic acid (5,6-EET). 2. Several P450 inhibitors diminished the sustained [Ca2+](i) plateau response to agonist or intracellular Ca2+ store depletion with ATPase inhibitors by 31-69% (fura-2 technique). Mn2+ influx stimulated by agonists or ATPase inhibitors was prevented by P450 inhibitors. 3. Histamine- or ATPase inhibitor-stimulated formation of EDNO was strongly attenuated (50-83%) by P450 inhibitors, without any effect on EDNO formation by the Ca2+ ionophore A23187, indicating that decreased EDNO synthesis is due specifically to the inhibition of Ca2+ entry by these compounds. 4. Induction of P450 MO by β-naphthoflavone potentiated agonist-induced Ca2+ and Mn2+ influx by 60 and 53%, respectively. Intracellular Ca2+ release remained unchanged. 5. The P450 MO product, 5,6-EET (<156 nmol l-1), activated Ca2+/Mn2+ entry without any depletion of intracellular Ca2+ stores. The 5,6-EET-stimulated Ca2+/Mn2+ entry was not affected by P450 inhibitors. 6. As with the bradykinin-stimulated Ca2+ entry pathway, the 5,6-EET-activated Ca2+ entry pathway was permeable to Mn2+ and Ba2+, sensitive to Ni2+, La3+ and membrane depolarization, and insensitive to the removal of extracellular Na+ or the organic Ca2+ antagonist, nitrendipine. 7. In the presence of 5,6-EET, stimulation with bradykinin only transiently increased [Ca2+](i). Vice versa, 5,6-EET failed to increase [Ca2+](i) further in bradykinin-stimulated cells. The sustained [Ca2+](i) plateau phase induced by a co-stimulation with bradykinin and 5,6-EET was identical to that observed with bradykinin or 5,6-EET alone. 8. These results demonstrate that Ca2+ entry induced by the P450 MO product, 5,6-EET, is indistinguishable to that observed by stimulation with bradykinin. 9. All data support our hypothesis that depletion of endothelial Ca2+ stores activates microsomal P450 MO which in turn synthesizes 5,6-EET. We propose that the arachidonic acid metabolite 5,6-EET or one of its metabolites is a second messenger for activation of endothelial Ca2+ entry.

UR - http://www.scopus.com/inward/record.url?scp=0028873536&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028873536&partnerID=8YFLogxK

M3 - Article

VL - 482

SP - 259

EP - 274

JO - Journal of Physiology

JF - Journal of Physiology

SN - 0022-3751

IS - 2

ER -