Design and synthesis of novel quinone inhibitors targeted to the redox function of apurinic/apyrimidinic endonuclease 1/redox enhancing factor-1 (Ape1/Ref-1)

Rodney L. Nyland, Meihua Luo, Mark R. Kelley, Richard F. Borch

Research output: Contribution to journalArticle

52 Scopus citations

Abstract

The multifunctional enzyme apurinic endonuclease 1/redox enhancing factor 1 (Ape1/ref-1) maintains genetic fidelity through the repair of apurinic sites and regulates transcription through redox-dependent activation of transcription factors. Ape1 can therefore serve as a therapeutic target in either a DNA repair or transcriptional context. Inhibitors of the redox function can be used as either therapeutics or novel tools for separating the two functions for in vitro study. Presently there exist only a few compounds that have been reported to inhibit Ape1 redox activity; here we describe a series of quinones that exhibit micromolar inhibition of the redox function of Ape1. Benzoquinone and naphthoquinone analogues of the Ape1-inhibitor E3330 were designed and synthesized to explore structural effects on redox function and inhibition of cell growth. Most of the naphthoquinones were low micromolar inhibitors of Ape1 redox activity, and the most potent analogues inhibited tumor cell growth with IC50 values in the 10-20 μM range.

Original languageEnglish (US)
Pages (from-to)1200-1210
Number of pages11
JournalJournal of Medicinal Chemistry
Volume53
Issue number3
DOIs
StatePublished - 2010

ASJC Scopus subject areas

  • Molecular Medicine
  • Drug Discovery

Fingerprint Dive into the research topics of 'Design and synthesis of novel quinone inhibitors targeted to the redox function of apurinic/apyrimidinic endonuclease 1/redox enhancing factor-1 (Ape1/Ref-1)'. Together they form a unique fingerprint.

  • Cite this