Developmental changes in cardiac sarcoplasmic reticulum in sheep

L. Mahony, Larry Jones

Research output: Contribution to journalArticle

102 Citations (Scopus)

Abstract

Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p<0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p<0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p<0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alternations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.

Original languageEnglish
Pages (from-to)15257-15265
Number of pages9
JournalJournal of Biological Chemistry
Volume261
Issue number32
StatePublished - 1986

Fingerprint

Sarcoplasmic Reticulum
Sheep
Pumps
Adenosine Triphosphatases
Calsequestrin
Nitrendipine
Ryanodine
Proteins
Alkaloids
Muscle
Binding Sites
Calcium-Transporting ATPases
Chemical analysis
Myocardium
Mothers
Fetal Heart
Active Biological Transport
Muscle Contraction
Permeability

ASJC Scopus subject areas

  • Biochemistry

Cite this

Developmental changes in cardiac sarcoplasmic reticulum in sheep. / Mahony, L.; Jones, Larry.

In: Journal of Biological Chemistry, Vol. 261, No. 32, 1986, p. 15257-15265.

Research output: Contribution to journalArticle

@article{0d7575eeed7d4739aeee08c4b01dbf14,
title = "Developmental changes in cardiac sarcoplasmic reticulum in sheep",
abstract = "Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60{\%} (p<0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30{\%} (p<0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p<0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alternations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.",
author = "L. Mahony and Larry Jones",
year = "1986",
language = "English",
volume = "261",
pages = "15257--15265",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "32",

}

TY - JOUR

T1 - Developmental changes in cardiac sarcoplasmic reticulum in sheep

AU - Mahony, L.

AU - Jones, Larry

PY - 1986

Y1 - 1986

N2 - Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p<0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p<0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p<0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alternations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.

AB - Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p<0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p<0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p<0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alternations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.

UR - http://www.scopus.com/inward/record.url?scp=0023002371&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023002371&partnerID=8YFLogxK

M3 - Article

VL - 261

SP - 15257

EP - 15265

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 32

ER -