Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis

Byron Batteiger, W. J V Newhall, R. B. Jones

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The lymphogranuloma venereum (LGV) and trachoma biovars of Chlamydia trachomatis exhibit differences in biological properties both in vivo and in vitro. To identify analogous biochemical differences, we studied the molecular charges of chlamydial outer membrane proteins (OMPs) by means of isoelectric focusing and nonequilibrium pH gradient electrophoresis. Analysis of proteins of whole elementary bodies biosynthetically labeled with L-[35S]cysteine revealed that most chlamydial proteins were neutral or acidic. The major OMPs (MOMPs) of all strains tested were acidic and had apparent isoelectric points (pIs) that varied within narrow limits (approximately 5.3 to 5.5) despite differences in molecular mass of up to 3,000 daltons (Da). However, a low-molecular-mass cysteine-rich OMP analogous to that previously described for Chlamydia psittaci varied consistently in molecular mass (12,500 versus 12,000 Da) and pI (5.4 versus 6.9) between LGV strains and trachoma strains, respectively. OMPs with a molecular mass of 60,000 Da in the trachoma biovar strains had pIs in the 7.3 to 7.7 range. However, analogous OMPs in the LGV strains existed as a doublet with a molecular mass of about 60,000 Da. Both members of the doublet were basic (pIs > 8.5). Both proteins of this basic doublet in LGV strains and the neutral analog in trachoma strains bound a species-specific monoclonal antibody in an immunoblot assay. These data indicate substantial differences in biochemical characteristics of analogous OMPs in the LGV and trachoma biovars. Such differences are the first structural differences described between LGV and trachoma strains which support their distinction into separate biovars and may be related to some of their biological differences.

Original languageEnglish
Pages (from-to)488-494
Number of pages7
JournalInfection and Immunity
Volume50
Issue number2
StatePublished - 1985

Fingerprint

Lymphogranuloma Venereum
Trachoma
Chlamydia trachomatis
Membrane Proteins
Cysteine
Chlamydophila psittaci
Proteins
Proton-Motive Force
Isoelectric Point
Isoelectric Focusing
Electrophoresis
Monoclonal Antibodies

ASJC Scopus subject areas

  • Immunology

Cite this

Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis. / Batteiger, Byron; Newhall, W. J V; Jones, R. B.

In: Infection and Immunity, Vol. 50, No. 2, 1985, p. 488-494.

Research output: Contribution to journalArticle

@article{e89c4700f0d64dc19b0da8e4a3563602,
title = "Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis",
abstract = "The lymphogranuloma venereum (LGV) and trachoma biovars of Chlamydia trachomatis exhibit differences in biological properties both in vivo and in vitro. To identify analogous biochemical differences, we studied the molecular charges of chlamydial outer membrane proteins (OMPs) by means of isoelectric focusing and nonequilibrium pH gradient electrophoresis. Analysis of proteins of whole elementary bodies biosynthetically labeled with L-[35S]cysteine revealed that most chlamydial proteins were neutral or acidic. The major OMPs (MOMPs) of all strains tested were acidic and had apparent isoelectric points (pIs) that varied within narrow limits (approximately 5.3 to 5.5) despite differences in molecular mass of up to 3,000 daltons (Da). However, a low-molecular-mass cysteine-rich OMP analogous to that previously described for Chlamydia psittaci varied consistently in molecular mass (12,500 versus 12,000 Da) and pI (5.4 versus 6.9) between LGV strains and trachoma strains, respectively. OMPs with a molecular mass of 60,000 Da in the trachoma biovar strains had pIs in the 7.3 to 7.7 range. However, analogous OMPs in the LGV strains existed as a doublet with a molecular mass of about 60,000 Da. Both members of the doublet were basic (pIs > 8.5). Both proteins of this basic doublet in LGV strains and the neutral analog in trachoma strains bound a species-specific monoclonal antibody in an immunoblot assay. These data indicate substantial differences in biochemical characteristics of analogous OMPs in the LGV and trachoma biovars. Such differences are the first structural differences described between LGV and trachoma strains which support their distinction into separate biovars and may be related to some of their biological differences.",
author = "Byron Batteiger and Newhall, {W. J V} and Jones, {R. B.}",
year = "1985",
language = "English",
volume = "50",
pages = "488--494",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "2",

}

TY - JOUR

T1 - Differences in outer membrane proteins of the lymphogranuloma venereum and trachoma biovars of Chlamydia trachomatis

AU - Batteiger, Byron

AU - Newhall, W. J V

AU - Jones, R. B.

PY - 1985

Y1 - 1985

N2 - The lymphogranuloma venereum (LGV) and trachoma biovars of Chlamydia trachomatis exhibit differences in biological properties both in vivo and in vitro. To identify analogous biochemical differences, we studied the molecular charges of chlamydial outer membrane proteins (OMPs) by means of isoelectric focusing and nonequilibrium pH gradient electrophoresis. Analysis of proteins of whole elementary bodies biosynthetically labeled with L-[35S]cysteine revealed that most chlamydial proteins were neutral or acidic. The major OMPs (MOMPs) of all strains tested were acidic and had apparent isoelectric points (pIs) that varied within narrow limits (approximately 5.3 to 5.5) despite differences in molecular mass of up to 3,000 daltons (Da). However, a low-molecular-mass cysteine-rich OMP analogous to that previously described for Chlamydia psittaci varied consistently in molecular mass (12,500 versus 12,000 Da) and pI (5.4 versus 6.9) between LGV strains and trachoma strains, respectively. OMPs with a molecular mass of 60,000 Da in the trachoma biovar strains had pIs in the 7.3 to 7.7 range. However, analogous OMPs in the LGV strains existed as a doublet with a molecular mass of about 60,000 Da. Both members of the doublet were basic (pIs > 8.5). Both proteins of this basic doublet in LGV strains and the neutral analog in trachoma strains bound a species-specific monoclonal antibody in an immunoblot assay. These data indicate substantial differences in biochemical characteristics of analogous OMPs in the LGV and trachoma biovars. Such differences are the first structural differences described between LGV and trachoma strains which support their distinction into separate biovars and may be related to some of their biological differences.

AB - The lymphogranuloma venereum (LGV) and trachoma biovars of Chlamydia trachomatis exhibit differences in biological properties both in vivo and in vitro. To identify analogous biochemical differences, we studied the molecular charges of chlamydial outer membrane proteins (OMPs) by means of isoelectric focusing and nonequilibrium pH gradient electrophoresis. Analysis of proteins of whole elementary bodies biosynthetically labeled with L-[35S]cysteine revealed that most chlamydial proteins were neutral or acidic. The major OMPs (MOMPs) of all strains tested were acidic and had apparent isoelectric points (pIs) that varied within narrow limits (approximately 5.3 to 5.5) despite differences in molecular mass of up to 3,000 daltons (Da). However, a low-molecular-mass cysteine-rich OMP analogous to that previously described for Chlamydia psittaci varied consistently in molecular mass (12,500 versus 12,000 Da) and pI (5.4 versus 6.9) between LGV strains and trachoma strains, respectively. OMPs with a molecular mass of 60,000 Da in the trachoma biovar strains had pIs in the 7.3 to 7.7 range. However, analogous OMPs in the LGV strains existed as a doublet with a molecular mass of about 60,000 Da. Both members of the doublet were basic (pIs > 8.5). Both proteins of this basic doublet in LGV strains and the neutral analog in trachoma strains bound a species-specific monoclonal antibody in an immunoblot assay. These data indicate substantial differences in biochemical characteristics of analogous OMPs in the LGV and trachoma biovars. Such differences are the first structural differences described between LGV and trachoma strains which support their distinction into separate biovars and may be related to some of their biological differences.

UR - http://www.scopus.com/inward/record.url?scp=0022410728&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022410728&partnerID=8YFLogxK

M3 - Article

C2 - 4055030

AN - SCOPUS:0022410728

VL - 50

SP - 488

EP - 494

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 2

ER -