Differential transcriptional and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-1 and fetal bovine serum in murine fibroblasts

J. H.F. Falkenburg, M. A. Harrington, R. A. De Paus, W. K. Walsh, R. Daub, J. E. Landegent, H. E. Broxmeyer

Research output: Contribution to journalArticle

38 Scopus citations


Colony-stimulating factors (CSF) are important factors in the proliferation and differentiation of hematopoietic progenitor cells (HPC), and in the survival and activation of mature blood cells. Interleukin-I (IL-1) combined with fetal bovine serum (FBS) strongly induces the expression of macrophage-CSF (M-CSF), granulocyte-CSF (G-CSF), and granulocyte-macrophage-CSF (GM-CSF) in fibroblasts. Here, we report on the regulation of CSF gene expression in murine fibroblasts following IL-1 and FBS stimulation. We demonstrate that 10T 1/2 murine fibroblasts induced by FBS or IL-1 accumulate M-CSF messenger RNA (mRNA). G-CSF mRNA expression was induced by IL-1, and not by FBS. For GM-CSF expression, induction with both FBS and IL-1 was required. Blocking studies with actinomycin-D showed that active transcription is essential for accumulation of all three CSF mRNAs. After blocking protein synthesis with cycloheximide, IL-1-or FBS-induced M-CSF expression and IL-1 plus FBS-induced GM-CSF expression still occurred and was increased. IL-1-induced G-CSF expression was completely prevented in these cells by pretreatment with cycloheximide, illustrating that, for this effect, intermediate protein synthesis was required. The half-lives of M-CSF transcripts were not substantially altered by addition of IL-1, FBS, or FBS plus IL-1. Using nuclear run-on assays, we demonstrated that the transcription rate of M-CSF was increased up to 20-fold by the addition of FBS, IL-1, or FBS plus IL-1. After blocking protein synthesis with cycloheximide, IL-1- or FBS-induced increase in M-CSF transcription rate was also observed. GM-CSF transcription increased up to fourfold after induction with FBS or IL-1. G-CSF transcription rate was not altered by FBS or IL-1. Our results indicate that M-CSF expression induced by FBS or IL-1 in these fibroblasts is primarily regulated at the transcriptional level. GM-CSF expression appears to be regulated both transcriptionally and posttranscriptionally, and G-CSF expression is regulated mainly at the posttranscriptional level.

Original languageEnglish (US)
Pages (from-to)658-665
Number of pages8
Issue number3
StatePublished - Jan 1 1991


ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Cite this