Differing causes of lactic acidosis and deep breathing in cerebral malaria and severe malarial anemia may explain differences in acidosis-related mortality

Nathan R. Brand, Robert O. Opoka, Karen E S Hamre, Chandy John

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Lactic acidosis (LA) is a marker for mortality in severe malaria, but the mechanisms that lead to LA in the different types of severe malaria and the extent to which LA-associated mortality differs by type of severe malaria are not well described. We assessed the frequency of LA in children admitted to Mulago Hospital, Kampala, Uganda with cerebral malaria (CM, n = 193) or severe malarial anemia (SMA, n = 216). LA was compared to mortality and measures of parasite biomass and sequestration (P. falciparum histidine-rich protein-2 (PfHRP2) concentration, platelet count), and to a measure of systemic tissue oxygen delivery (hemoglobin level). LA was more frequent in children with SMA than CM (SMA, 47.7%, CM, 34.2%, P = 0.006), but mortality was higher in children with CM (13.0%) than SMA (0.5%, P<0.0001). In CM, LA was associated with increased PfHRP2 concentration and decreased platelet count but was not associated with hemoglobin level. In contrast, in SMA, LA was associated with a decreased hemoglobin level, but was not associated with PfHRP2 concentration or platelet count. LA was related to mortality only in CM. In multivariable regression analysis of the effect PfHRP2 and hemoglobin levels on LA and DB, only PfHRP2 level increased risk of LA and DB in CM, while in SMA, elevated hemoglobin strongly decreased risk of LA and DB, and PfHRP2 level modestly increased risk of LA. The study findings suggest that LA in CM is due primarily to parasite sequestration, which currently has no effective adjunctive therapy, while LA in SMA is due primarily to anemia, which is rapidly corrected with blood transfusion. Differing etiologies of LA in CM and SMA may explain why LA is associated with mortality in CM but not SMA.

Original languageEnglish (US)
Article numbere0163728
JournalPLoS One
Volume11
Issue number9
DOIs
StatePublished - Sep 1 2016

Fingerprint

Cerebral Malaria
Lactic Acidosis
acidosis
Acidosis
anemia
breathing
Anemia
Respiration
milk
Mortality
histidine
hemoglobin
Hemoglobins
blood platelet count
Platelets
Platelet Count
malaria
Malaria
cerebral malaria
Milk

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

Cite this

Differing causes of lactic acidosis and deep breathing in cerebral malaria and severe malarial anemia may explain differences in acidosis-related mortality. / Brand, Nathan R.; Opoka, Robert O.; Hamre, Karen E S; John, Chandy.

In: PLoS One, Vol. 11, No. 9, e0163728, 01.09.2016.

Research output: Contribution to journalArticle

@article{7ecf3dd7ca9146dba314e9552ab00a6c,
title = "Differing causes of lactic acidosis and deep breathing in cerebral malaria and severe malarial anemia may explain differences in acidosis-related mortality",
abstract = "Lactic acidosis (LA) is a marker for mortality in severe malaria, but the mechanisms that lead to LA in the different types of severe malaria and the extent to which LA-associated mortality differs by type of severe malaria are not well described. We assessed the frequency of LA in children admitted to Mulago Hospital, Kampala, Uganda with cerebral malaria (CM, n = 193) or severe malarial anemia (SMA, n = 216). LA was compared to mortality and measures of parasite biomass and sequestration (P. falciparum histidine-rich protein-2 (PfHRP2) concentration, platelet count), and to a measure of systemic tissue oxygen delivery (hemoglobin level). LA was more frequent in children with SMA than CM (SMA, 47.7{\%}, CM, 34.2{\%}, P = 0.006), but mortality was higher in children with CM (13.0{\%}) than SMA (0.5{\%}, P<0.0001). In CM, LA was associated with increased PfHRP2 concentration and decreased platelet count but was not associated with hemoglobin level. In contrast, in SMA, LA was associated with a decreased hemoglobin level, but was not associated with PfHRP2 concentration or platelet count. LA was related to mortality only in CM. In multivariable regression analysis of the effect PfHRP2 and hemoglobin levels on LA and DB, only PfHRP2 level increased risk of LA and DB in CM, while in SMA, elevated hemoglobin strongly decreased risk of LA and DB, and PfHRP2 level modestly increased risk of LA. The study findings suggest that LA in CM is due primarily to parasite sequestration, which currently has no effective adjunctive therapy, while LA in SMA is due primarily to anemia, which is rapidly corrected with blood transfusion. Differing etiologies of LA in CM and SMA may explain why LA is associated with mortality in CM but not SMA.",
author = "Brand, {Nathan R.} and Opoka, {Robert O.} and Hamre, {Karen E S} and Chandy John",
year = "2016",
month = "9",
day = "1",
doi = "10.1371/journal.pone.0163728",
language = "English (US)",
volume = "11",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "9",

}

TY - JOUR

T1 - Differing causes of lactic acidosis and deep breathing in cerebral malaria and severe malarial anemia may explain differences in acidosis-related mortality

AU - Brand, Nathan R.

AU - Opoka, Robert O.

AU - Hamre, Karen E S

AU - John, Chandy

PY - 2016/9/1

Y1 - 2016/9/1

N2 - Lactic acidosis (LA) is a marker for mortality in severe malaria, but the mechanisms that lead to LA in the different types of severe malaria and the extent to which LA-associated mortality differs by type of severe malaria are not well described. We assessed the frequency of LA in children admitted to Mulago Hospital, Kampala, Uganda with cerebral malaria (CM, n = 193) or severe malarial anemia (SMA, n = 216). LA was compared to mortality and measures of parasite biomass and sequestration (P. falciparum histidine-rich protein-2 (PfHRP2) concentration, platelet count), and to a measure of systemic tissue oxygen delivery (hemoglobin level). LA was more frequent in children with SMA than CM (SMA, 47.7%, CM, 34.2%, P = 0.006), but mortality was higher in children with CM (13.0%) than SMA (0.5%, P<0.0001). In CM, LA was associated with increased PfHRP2 concentration and decreased platelet count but was not associated with hemoglobin level. In contrast, in SMA, LA was associated with a decreased hemoglobin level, but was not associated with PfHRP2 concentration or platelet count. LA was related to mortality only in CM. In multivariable regression analysis of the effect PfHRP2 and hemoglobin levels on LA and DB, only PfHRP2 level increased risk of LA and DB in CM, while in SMA, elevated hemoglobin strongly decreased risk of LA and DB, and PfHRP2 level modestly increased risk of LA. The study findings suggest that LA in CM is due primarily to parasite sequestration, which currently has no effective adjunctive therapy, while LA in SMA is due primarily to anemia, which is rapidly corrected with blood transfusion. Differing etiologies of LA in CM and SMA may explain why LA is associated with mortality in CM but not SMA.

AB - Lactic acidosis (LA) is a marker for mortality in severe malaria, but the mechanisms that lead to LA in the different types of severe malaria and the extent to which LA-associated mortality differs by type of severe malaria are not well described. We assessed the frequency of LA in children admitted to Mulago Hospital, Kampala, Uganda with cerebral malaria (CM, n = 193) or severe malarial anemia (SMA, n = 216). LA was compared to mortality and measures of parasite biomass and sequestration (P. falciparum histidine-rich protein-2 (PfHRP2) concentration, platelet count), and to a measure of systemic tissue oxygen delivery (hemoglobin level). LA was more frequent in children with SMA than CM (SMA, 47.7%, CM, 34.2%, P = 0.006), but mortality was higher in children with CM (13.0%) than SMA (0.5%, P<0.0001). In CM, LA was associated with increased PfHRP2 concentration and decreased platelet count but was not associated with hemoglobin level. In contrast, in SMA, LA was associated with a decreased hemoglobin level, but was not associated with PfHRP2 concentration or platelet count. LA was related to mortality only in CM. In multivariable regression analysis of the effect PfHRP2 and hemoglobin levels on LA and DB, only PfHRP2 level increased risk of LA and DB in CM, while in SMA, elevated hemoglobin strongly decreased risk of LA and DB, and PfHRP2 level modestly increased risk of LA. The study findings suggest that LA in CM is due primarily to parasite sequestration, which currently has no effective adjunctive therapy, while LA in SMA is due primarily to anemia, which is rapidly corrected with blood transfusion. Differing etiologies of LA in CM and SMA may explain why LA is associated with mortality in CM but not SMA.

UR - http://www.scopus.com/inward/record.url?scp=84991728187&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84991728187&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0163728

DO - 10.1371/journal.pone.0163728

M3 - Article

VL - 11

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 9

M1 - e0163728

ER -