Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging

Jianjian Shi, Michelle Surma, Yang Yang, Lei Wei

Research output: Contribution to journalArticle

Abstract

In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.

Original languageEnglish (US)
Pages (from-to)7348-7362
Number of pages15
JournalFASEB journal : official publication of the Federation of American Societies for Experimental Biology
Volume33
Issue number6
DOIs
StatePublished - Jun 1 2019

Fingerprint

Focal Adhesion Protein-Tyrosine Kinases
Myosin Light Chains
Autophagy
Sirolimus
Cardiac Myocytes
Fibrosis
Genes
Aging of materials
rho-Associated Kinases
Proto-Oncogene Proteins c-akt
Phosphorylation
Microtubule-Associated Proteins
Tamoxifen
Protein Isoforms
Phosphotransferases
Starvation
Cytoskeleton
MerCreMer recombinase
Light

Keywords

  • cytoskeleton
  • mTOR
  • Rho kinase

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Genetics

Cite this

@article{d889e9cff07242e793fa154f442e4e9e,
title = "Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging",
abstract = "In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.",
keywords = "cytoskeleton, mTOR, Rho kinase",
author = "Jianjian Shi and Michelle Surma and Yang Yang and Lei Wei",
year = "2019",
month = "6",
day = "1",
doi = "10.1096/fj.201802510R",
language = "English (US)",
volume = "33",
pages = "7348--7362",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "6",

}

TY - JOUR

T1 - Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging

AU - Shi, Jianjian

AU - Surma, Michelle

AU - Yang, Yang

AU - Wei, Lei

PY - 2019/6/1

Y1 - 2019/6/1

N2 - In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.

AB - In this study, we investigated the pathophysiological impact of Rho-associated coiled-coil-containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51-like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.-Shi, J., Surma, M., Yang, Y., Wei, L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging.

KW - cytoskeleton

KW - mTOR

KW - Rho kinase

UR - http://www.scopus.com/inward/record.url?scp=85067285506&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85067285506&partnerID=8YFLogxK

U2 - 10.1096/fj.201802510R

DO - 10.1096/fj.201802510R

M3 - Article

VL - 33

SP - 7348

EP - 7362

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 6

ER -