Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity

Jianjian Shi, Michelle Surma, Lei Wei

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Doxorubicin is among the essential medicines with a wide antitumor spectrum, but its clinical application is limited by its cardiotoxicity. We recently discovered that ROCK1 is a key molecule in mediating cardiac remodeling in response to various stresses. To determine the roles of ROCK1 in doxorubicin cardiotoxicity, we gave three doses of doxorubicin injections to wild type (WT) and ROCK1-/- mice with one week intervals between treatments, the cumulative dose being 24 mg/kg. ROCK1-/- mice exhibited preserved cardiac function, reduced apoptosis, autophagy and fibrosis compared to the WT mice. To further determine the cellular mechanisms, we have examined the role of ROCK1 in cardiomyocytes using cardiomyocyte-specific knockout mice, MHC-Cre/ ROCK1fl/fl, which partially reproduced the cardioprotective characteristics of ROCK1-/- mice, indicating that ROCK1 in both cardiomyocytes and non-cardiomyocytes mediates doxorubicin cardiotoxicity. To elucidate the molecular mechanisms, a detailed time course study after a single doxorubicin injection at 10 mg/kg was performed in ROCK1-/- and MHC-Cre/ROCK1fl/fl mice. The molecular analysis revealed that both ROCK1-/- and MHC-Cre/ROCK1fl/fl hearts exhibited significant reduction of doxorubicin-induced early responses including increased apoptotic (Bax) and autophagic (p62/SQSTM1 and LC3- II) markers, associated with reduced Beclin 1 phosphorylation on Thr119, supporting reduced Beclin 1-mediated autophagy initiation due to increased association of Beclin 1 with Bcl 2 or Bcl-XL in these hearts compared to the WT or ROCK1fl/fl mice. These results support that ROCK1 deficiency is cardioprotective against doxorubicininduced cardiotoxicity at least in part through reducing Beclin 1-mediated autophagy initiation in cardiomyocytes and restoring autophagic flux to ameliorate doxorubicin cardiotoxicity.

Original languageEnglish (US)
Pages (from-to)12995-13008
Number of pages14
JournalOncotarget
Volume9
Issue number16
DOIs
StatePublished - Jan 1 2018

Fingerprint

Doxorubicin
Cardiac Myocytes
Autophagy
Genes
Injections
Cardiotoxicity
Knockout Mice
Fibrosis
Phosphorylation
Apoptosis
Beclin-1

Keywords

  • Apoptosis
  • Autophagy
  • Cardiotoxicity
  • Doxorubicin
  • Rho kinase

ASJC Scopus subject areas

  • Oncology

Cite this

Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity. / Shi, Jianjian; Surma, Michelle; Wei, Lei.

In: Oncotarget, Vol. 9, No. 16, 01.01.2018, p. 12995-13008.

Research output: Contribution to journalArticle

@article{b73ce33bacf046aba99965e1acf2c316,
title = "Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity",
abstract = "Doxorubicin is among the essential medicines with a wide antitumor spectrum, but its clinical application is limited by its cardiotoxicity. We recently discovered that ROCK1 is a key molecule in mediating cardiac remodeling in response to various stresses. To determine the roles of ROCK1 in doxorubicin cardiotoxicity, we gave three doses of doxorubicin injections to wild type (WT) and ROCK1-/- mice with one week intervals between treatments, the cumulative dose being 24 mg/kg. ROCK1-/- mice exhibited preserved cardiac function, reduced apoptosis, autophagy and fibrosis compared to the WT mice. To further determine the cellular mechanisms, we have examined the role of ROCK1 in cardiomyocytes using cardiomyocyte-specific knockout mice, MHC-Cre/ ROCK1fl/fl, which partially reproduced the cardioprotective characteristics of ROCK1-/- mice, indicating that ROCK1 in both cardiomyocytes and non-cardiomyocytes mediates doxorubicin cardiotoxicity. To elucidate the molecular mechanisms, a detailed time course study after a single doxorubicin injection at 10 mg/kg was performed in ROCK1-/- and MHC-Cre/ROCK1fl/fl mice. The molecular analysis revealed that both ROCK1-/- and MHC-Cre/ROCK1fl/fl hearts exhibited significant reduction of doxorubicin-induced early responses including increased apoptotic (Bax) and autophagic (p62/SQSTM1 and LC3- II) markers, associated with reduced Beclin 1 phosphorylation on Thr119, supporting reduced Beclin 1-mediated autophagy initiation due to increased association of Beclin 1 with Bcl 2 or Bcl-XL in these hearts compared to the WT or ROCK1fl/fl mice. These results support that ROCK1 deficiency is cardioprotective against doxorubicininduced cardiotoxicity at least in part through reducing Beclin 1-mediated autophagy initiation in cardiomyocytes and restoring autophagic flux to ameliorate doxorubicin cardiotoxicity.",
keywords = "Apoptosis, Autophagy, Cardiotoxicity, Doxorubicin, Rho kinase",
author = "Jianjian Shi and Michelle Surma and Lei Wei",
year = "2018",
month = "1",
day = "1",
doi = "10.18632/oncotarget.24457",
language = "English (US)",
volume = "9",
pages = "12995--13008",
journal = "Oncotarget",
issn = "1949-2553",
publisher = "Impact Journals",
number = "16",

}

TY - JOUR

T1 - Disruption of ROCK1 gene restores autophagic flux and mitigates doxorubicin-induced cardiotoxicity

AU - Shi, Jianjian

AU - Surma, Michelle

AU - Wei, Lei

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Doxorubicin is among the essential medicines with a wide antitumor spectrum, but its clinical application is limited by its cardiotoxicity. We recently discovered that ROCK1 is a key molecule in mediating cardiac remodeling in response to various stresses. To determine the roles of ROCK1 in doxorubicin cardiotoxicity, we gave three doses of doxorubicin injections to wild type (WT) and ROCK1-/- mice with one week intervals between treatments, the cumulative dose being 24 mg/kg. ROCK1-/- mice exhibited preserved cardiac function, reduced apoptosis, autophagy and fibrosis compared to the WT mice. To further determine the cellular mechanisms, we have examined the role of ROCK1 in cardiomyocytes using cardiomyocyte-specific knockout mice, MHC-Cre/ ROCK1fl/fl, which partially reproduced the cardioprotective characteristics of ROCK1-/- mice, indicating that ROCK1 in both cardiomyocytes and non-cardiomyocytes mediates doxorubicin cardiotoxicity. To elucidate the molecular mechanisms, a detailed time course study after a single doxorubicin injection at 10 mg/kg was performed in ROCK1-/- and MHC-Cre/ROCK1fl/fl mice. The molecular analysis revealed that both ROCK1-/- and MHC-Cre/ROCK1fl/fl hearts exhibited significant reduction of doxorubicin-induced early responses including increased apoptotic (Bax) and autophagic (p62/SQSTM1 and LC3- II) markers, associated with reduced Beclin 1 phosphorylation on Thr119, supporting reduced Beclin 1-mediated autophagy initiation due to increased association of Beclin 1 with Bcl 2 or Bcl-XL in these hearts compared to the WT or ROCK1fl/fl mice. These results support that ROCK1 deficiency is cardioprotective against doxorubicininduced cardiotoxicity at least in part through reducing Beclin 1-mediated autophagy initiation in cardiomyocytes and restoring autophagic flux to ameliorate doxorubicin cardiotoxicity.

AB - Doxorubicin is among the essential medicines with a wide antitumor spectrum, but its clinical application is limited by its cardiotoxicity. We recently discovered that ROCK1 is a key molecule in mediating cardiac remodeling in response to various stresses. To determine the roles of ROCK1 in doxorubicin cardiotoxicity, we gave three doses of doxorubicin injections to wild type (WT) and ROCK1-/- mice with one week intervals between treatments, the cumulative dose being 24 mg/kg. ROCK1-/- mice exhibited preserved cardiac function, reduced apoptosis, autophagy and fibrosis compared to the WT mice. To further determine the cellular mechanisms, we have examined the role of ROCK1 in cardiomyocytes using cardiomyocyte-specific knockout mice, MHC-Cre/ ROCK1fl/fl, which partially reproduced the cardioprotective characteristics of ROCK1-/- mice, indicating that ROCK1 in both cardiomyocytes and non-cardiomyocytes mediates doxorubicin cardiotoxicity. To elucidate the molecular mechanisms, a detailed time course study after a single doxorubicin injection at 10 mg/kg was performed in ROCK1-/- and MHC-Cre/ROCK1fl/fl mice. The molecular analysis revealed that both ROCK1-/- and MHC-Cre/ROCK1fl/fl hearts exhibited significant reduction of doxorubicin-induced early responses including increased apoptotic (Bax) and autophagic (p62/SQSTM1 and LC3- II) markers, associated with reduced Beclin 1 phosphorylation on Thr119, supporting reduced Beclin 1-mediated autophagy initiation due to increased association of Beclin 1 with Bcl 2 or Bcl-XL in these hearts compared to the WT or ROCK1fl/fl mice. These results support that ROCK1 deficiency is cardioprotective against doxorubicininduced cardiotoxicity at least in part through reducing Beclin 1-mediated autophagy initiation in cardiomyocytes and restoring autophagic flux to ameliorate doxorubicin cardiotoxicity.

KW - Apoptosis

KW - Autophagy

KW - Cardiotoxicity

KW - Doxorubicin

KW - Rho kinase

UR - http://www.scopus.com/inward/record.url?scp=85042562235&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85042562235&partnerID=8YFLogxK

U2 - 10.18632/oncotarget.24457

DO - 10.18632/oncotarget.24457

M3 - Article

AN - SCOPUS:85042562235

VL - 9

SP - 12995

EP - 13008

JO - Oncotarget

JF - Oncotarget

SN - 1949-2553

IS - 16

ER -