DNA microarray analysis of differential gene expression of 6-year-old rat neural striatal progenitor cells during early differentiation

Feng C. Zhou, John R. Duguid, Howard J. Edenberg, Jeanette McClintick, Peter Young, Paul Nelson

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

EGF-responsive striatal progenitor cells from rat brain have been maintained in culture in the form of neurospheres for six years without exhausting their renewal capacity. The events surrounding differentiation of stem cells in the brain after a long progenitorship remain a mystery. Using DNA microarray analysis we investigated differential gene expression, comparing progenitor cells in their neurosphere state with the cells 24 hours after induction of differentiation. Eighty-one genes showed increased expression in the differentiated condition. Genes associated with cellular growth, neurite outgrowth, and synaptogenesis were activated, including both anti-apoptotic and pro-apoptotic genes. Two transmitter-related genes, acetylcholine receptor-β and glutamate receptor-β-unit were also elevated; these genes not only fit the profile of early neural development, but also reflect the characteristics of striatal neurons. In addition, there are approximately 30 expressed sequence tags (EST) increased during neural differentiation. Forty-seven genes showed decreased expression; half of them are known genes related to the cell cycle, cell adhesion, transcription, and signaling. The signaling and cell cycle genes may be responsible for the life-long self-renewal. These data demonstrate for the first time that life-long quiescent stem cells retain the potential to become activated and develop into specific types of brain cells. The six-year long-term neural stem cells are an excellent model for studying developmental neurobiological processes and aging.

Original languageEnglish (US)
Pages (from-to)95-104
Number of pages10
JournalRestorative Neurology and Neuroscience
Volume18
Issue number2-3
StatePublished - Nov 9 2001

Keywords

  • Aging
  • Apoptosis
  • Development
  • Gene expression
  • Genomics
  • Microarray
  • Neural stem cells
  • Signal transduction

ASJC Scopus subject areas

  • Neuroscience(all)
  • Neuropsychology and Physiological Psychology

Fingerprint Dive into the research topics of 'DNA microarray analysis of differential gene expression of 6-year-old rat neural striatal progenitor cells during early differentiation'. Together they form a unique fingerprint.

  • Cite this