Dose-response effects of zinc and fluoride on caries lesion remineralization

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0-153 μmol/l) and fluoride (1.1 or 52.6 μmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 μmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 μmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8-15.3 μmol/l. At 76.5 and less so at 153 μmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 μmol/l fluoride, but enhanced remineralization at 52.6 μmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.

Original languageEnglish (US)
Pages (from-to)62-68
Number of pages7
JournalCaries Research
Volume46
Issue number1
DOIs
StatePublished - Feb 2012

Fingerprint

Fluorides
Zinc
Citric Acid
Minerals
Microradiography
Artificial Saliva
Methylcellulose
zinc fluoride
Gels
Acids

Keywords

  • Caries prevention
  • Demineralization
  • Enamel
  • Fluoride
  • Remineralization
  • Zinc

ASJC Scopus subject areas

  • Dentistry(all)

Cite this

Dose-response effects of zinc and fluoride on caries lesion remineralization. / Lippert, Frank.

In: Caries Research, Vol. 46, No. 1, 02.2012, p. 62-68.

Research output: Contribution to journalArticle

@article{466fefc9c8b3484abd840d9f3c12937b,
title = "Dose-response effects of zinc and fluoride on caries lesion remineralization",
abstract = "The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0-153 μmol/l) and fluoride (1.1 or 52.6 μmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 μmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 μmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8-15.3 μmol/l. At 76.5 and less so at 153 μmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 μmol/l fluoride, but enhanced remineralization at 52.6 μmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.",
keywords = "Caries prevention, Demineralization, Enamel, Fluoride, Remineralization, Zinc",
author = "Frank Lippert",
year = "2012",
month = "2",
doi = "10.1159/000335573",
language = "English (US)",
volume = "46",
pages = "62--68",
journal = "Caries Research",
issn = "0008-6568",
publisher = "S. Karger AG",
number = "1",

}

TY - JOUR

T1 - Dose-response effects of zinc and fluoride on caries lesion remineralization

AU - Lippert, Frank

PY - 2012/2

Y1 - 2012/2

N2 - The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0-153 μmol/l) and fluoride (1.1 or 52.6 μmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 μmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 μmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8-15.3 μmol/l. At 76.5 and less so at 153 μmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 μmol/l fluoride, but enhanced remineralization at 52.6 μmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.

AB - The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0-153 μmol/l) and fluoride (1.1 or 52.6 μmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 μmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 μmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8-15.3 μmol/l. At 76.5 and less so at 153 μmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 μmol/l fluoride, but enhanced remineralization at 52.6 μmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.

KW - Caries prevention

KW - Demineralization

KW - Enamel

KW - Fluoride

KW - Remineralization

KW - Zinc

UR - http://www.scopus.com/inward/record.url?scp=84856195881&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84856195881&partnerID=8YFLogxK

U2 - 10.1159/000335573

DO - 10.1159/000335573

M3 - Article

VL - 46

SP - 62

EP - 68

JO - Caries Research

JF - Caries Research

SN - 0008-6568

IS - 1

ER -