E11/gp38 selective expression in osteocytes: Regulation by mechanical strain and role in dendrite elongation

Keqin Zhang, Cielo Barragan-Adjemian, Ling Ye, Shiva Kotha, Mark Dallas, Yongbo Lu, Shujie Zhao, Marie Harris, Stephen E. Harris, Jian Q. Feng, Lynda Bonewald

Research output: Contribution to journalArticle

153 Citations (Scopus)

Abstract

Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.

Original languageEnglish (US)
Pages (from-to)4539-4552
Number of pages14
JournalMolecular and Cellular Biology
Volume26
Issue number12
DOIs
StatePublished - Jun 2006
Externally publishedYes

Fingerprint

Osteocytes
Dendrites
Osteoblasts
Bone and Bones
Cell Line
Bone Remodeling
Giant Cells
Cell Communication
Dendritic Cells
Small Interfering RNA
Minerals
Epitopes
Cell Survival
Proteins
Phenotype

ASJC Scopus subject areas

  • Molecular Biology
  • Genetics
  • Cell Biology

Cite this

E11/gp38 selective expression in osteocytes : Regulation by mechanical strain and role in dendrite elongation. / Zhang, Keqin; Barragan-Adjemian, Cielo; Ye, Ling; Kotha, Shiva; Dallas, Mark; Lu, Yongbo; Zhao, Shujie; Harris, Marie; Harris, Stephen E.; Feng, Jian Q.; Bonewald, Lynda.

In: Molecular and Cellular Biology, Vol. 26, No. 12, 06.2006, p. 4539-4552.

Research output: Contribution to journalArticle

Zhang, K, Barragan-Adjemian, C, Ye, L, Kotha, S, Dallas, M, Lu, Y, Zhao, S, Harris, M, Harris, SE, Feng, JQ & Bonewald, L 2006, 'E11/gp38 selective expression in osteocytes: Regulation by mechanical strain and role in dendrite elongation', Molecular and Cellular Biology, vol. 26, no. 12, pp. 4539-4552. https://doi.org/10.1128/MCB.02120-05
Zhang, Keqin ; Barragan-Adjemian, Cielo ; Ye, Ling ; Kotha, Shiva ; Dallas, Mark ; Lu, Yongbo ; Zhao, Shujie ; Harris, Marie ; Harris, Stephen E. ; Feng, Jian Q. ; Bonewald, Lynda. / E11/gp38 selective expression in osteocytes : Regulation by mechanical strain and role in dendrite elongation. In: Molecular and Cellular Biology. 2006 ; Vol. 26, No. 12. pp. 4539-4552.
@article{dc5a817f258a4a68bfc15cdac22e50be,
title = "E11/gp38 selective expression in osteocytes: Regulation by mechanical strain and role in dendrite elongation",
abstract = "Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.",
author = "Keqin Zhang and Cielo Barragan-Adjemian and Ling Ye and Shiva Kotha and Mark Dallas and Yongbo Lu and Shujie Zhao and Marie Harris and Harris, {Stephen E.} and Feng, {Jian Q.} and Lynda Bonewald",
year = "2006",
month = "6",
doi = "10.1128/MCB.02120-05",
language = "English (US)",
volume = "26",
pages = "4539--4552",
journal = "Molecular and Cellular Biology",
issn = "0270-7306",
publisher = "American Society for Microbiology",
number = "12",

}

TY - JOUR

T1 - E11/gp38 selective expression in osteocytes

T2 - Regulation by mechanical strain and role in dendrite elongation

AU - Zhang, Keqin

AU - Barragan-Adjemian, Cielo

AU - Ye, Ling

AU - Kotha, Shiva

AU - Dallas, Mark

AU - Lu, Yongbo

AU - Zhao, Shujie

AU - Harris, Marie

AU - Harris, Stephen E.

AU - Feng, Jian Q.

AU - Bonewald, Lynda

PY - 2006/6

Y1 - 2006/6

N2 - Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.

AB - Within mineralized bone, osteocytes form dendritic processes that travel through canaliculi to make contact with other osteocytes and cells on the bone surface. This three-dimensional syncytium is thought to be necessary to maintain viability, cell-to-cell communication, and mechanosensation. E11/gp38 is the earliest osteocyte-selective protein to be expressed as the osteoblast differentiates into an osteoid cell or osteocyte, first appearing on the forming dendritic processes of these cells. Bone extracts contain large amounts of E11, but immunostaining only shows its presence in early osteocytes compared to more deeply embedded cells, suggesting epitope masking by mineral. Freshly isolated primary osteoblasts are negative for E11 expression but begin to express this protein in culture, and expression increases with time, suggesting differentiation into the osteocyte phenotype. Osteoblast-like cell lines 2T3 and Oct-1 also show increased expression of E11 with differentiation and mineralization. E11 is highly expressed in MLO-Y4 osteocyte-like cells compared to osteoblast cell lines and primary osteoblasts. Differentiated, mineralized 2T3 cells and MLO-Y4 cells subjected to fluid flow shear stress show an increase in mRNA for E11. MLO-Y4 cells show an increase in dendricity and elongation of dendrites in response to shear stress that is blocked by small interfering RNA specific to E11. In vivo, E11 expression is also increased by a mechanical load, not only in osteocytes near the bone surface but also in osteocytes more deeply embedded in bone. Maximal expression is observed not in regions of maximal strain but in a region of potential bone remodeling, suggesting that dendrite elongation may be occurring during this process. These data suggest that osteocytes may be able to extend their cellular processes after embedment in mineralized matrix and have implications for osteocytic modification of their microenvironment.

UR - http://www.scopus.com/inward/record.url?scp=33745012580&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745012580&partnerID=8YFLogxK

U2 - 10.1128/MCB.02120-05

DO - 10.1128/MCB.02120-05

M3 - Article

C2 - 16738320

AN - SCOPUS:33745012580

VL - 26

SP - 4539

EP - 4552

JO - Molecular and Cellular Biology

JF - Molecular and Cellular Biology

SN - 0270-7306

IS - 12

ER -