Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes

Jennifer B. Dennison, David R. Jones, Jamie Renbarger, Stephen D. Hall

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

Vincristine is preferentially metabolized to a secondary amine, M1, by CYP3A5 with a 9- to 14-fold higher intrinsic clearance than CYP3A4 using cDNA-expressed enzymes. The genetically polymorphic expression of CYP3A5 may contribute to interindividual variability in vincristine efficacy and toxicity. The current study quantifies the contribution of cytochromes P450 (P450s), including CYP3A4 and CYP3A5, to vincristine metabolism with a bank of human liver microsomes (HLMs). M1 was the major metabolite formed with HLMs, and selective chemical inhibition of P450s confirmed that CYP3A was the major metabolizing subfamily. The liver tissues were genotyped for low expression alleles, CYP3A5*3,*6, and *7, and the HLMs were phenotyped for CYP3A4 and CYP3A5 expression by Western blot. Testosterone 6β- hydroxylation and itraconazole hydroxylation were used to quantify CYP3A4 activity in the HLMs. For each CYP3A5 high expresser (n = 10), the rate of M1 formation from vincristine due to CYP3A5 was quantified by subtracting the CYP3A4 contribution as determined by linear regression with CYP3A5*3/ *3 samples. For CYP3A5 high expressers, the contribution of CYP3A5 to the metabolism of vincristine was 54 to 95% of the total activity, and the rate of M1 formation mediated by CYP3A5 correlated with CYP3A5 protein content (r 2 = 0.95). Selective inhibition of CYP3A4 demonstrated that the M1 formation rate with CYP3A5 high expressers was differentially inhibited based on CYP3A4 activity. Using median values, the estimated hepatic clearances were 5-fold higher for CYP3A5 high expressers than low expressers. We conclude that polymorphic expression of CYP3A5 may be a major determinant in the P450-mediated clearance of vincristine.

Original languageEnglish
Pages (from-to)553-563
Number of pages11
JournalJournal of Pharmacology and Experimental Therapeutics
Volume321
Issue number2
DOIs
StatePublished - May 2007

Fingerprint

Cytochrome P-450 CYP3A
Liver Microsomes
Vincristine
Hydroxylation

ASJC Scopus subject areas

  • Pharmacology

Cite this

Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. / Dennison, Jennifer B.; Jones, David R.; Renbarger, Jamie; Hall, Stephen D.

In: Journal of Pharmacology and Experimental Therapeutics, Vol. 321, No. 2, 05.2007, p. 553-563.

Research output: Contribution to journalArticle

Dennison, Jennifer B. ; Jones, David R. ; Renbarger, Jamie ; Hall, Stephen D. / Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. In: Journal of Pharmacology and Experimental Therapeutics. 2007 ; Vol. 321, No. 2. pp. 553-563.
@article{857c142ff5cc460a84a106cd8b7a1e8e,
title = "Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes",
abstract = "Vincristine is preferentially metabolized to a secondary amine, M1, by CYP3A5 with a 9- to 14-fold higher intrinsic clearance than CYP3A4 using cDNA-expressed enzymes. The genetically polymorphic expression of CYP3A5 may contribute to interindividual variability in vincristine efficacy and toxicity. The current study quantifies the contribution of cytochromes P450 (P450s), including CYP3A4 and CYP3A5, to vincristine metabolism with a bank of human liver microsomes (HLMs). M1 was the major metabolite formed with HLMs, and selective chemical inhibition of P450s confirmed that CYP3A was the major metabolizing subfamily. The liver tissues were genotyped for low expression alleles, CYP3A5*3,*6, and *7, and the HLMs were phenotyped for CYP3A4 and CYP3A5 expression by Western blot. Testosterone 6β- hydroxylation and itraconazole hydroxylation were used to quantify CYP3A4 activity in the HLMs. For each CYP3A5 high expresser (n = 10), the rate of M1 formation from vincristine due to CYP3A5 was quantified by subtracting the CYP3A4 contribution as determined by linear regression with CYP3A5*3/ *3 samples. For CYP3A5 high expressers, the contribution of CYP3A5 to the metabolism of vincristine was 54 to 95{\%} of the total activity, and the rate of M1 formation mediated by CYP3A5 correlated with CYP3A5 protein content (r 2 = 0.95). Selective inhibition of CYP3A4 demonstrated that the M1 formation rate with CYP3A5 high expressers was differentially inhibited based on CYP3A4 activity. Using median values, the estimated hepatic clearances were 5-fold higher for CYP3A5 high expressers than low expressers. We conclude that polymorphic expression of CYP3A5 may be a major determinant in the P450-mediated clearance of vincristine.",
author = "Dennison, {Jennifer B.} and Jones, {David R.} and Jamie Renbarger and Hall, {Stephen D.}",
year = "2007",
month = "5",
doi = "10.1124/jpet.106.118471",
language = "English",
volume = "321",
pages = "553--563",
journal = "Journal of Pharmacology and Experimental Therapeutics",
issn = "0022-3565",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes

AU - Dennison, Jennifer B.

AU - Jones, David R.

AU - Renbarger, Jamie

AU - Hall, Stephen D.

PY - 2007/5

Y1 - 2007/5

N2 - Vincristine is preferentially metabolized to a secondary amine, M1, by CYP3A5 with a 9- to 14-fold higher intrinsic clearance than CYP3A4 using cDNA-expressed enzymes. The genetically polymorphic expression of CYP3A5 may contribute to interindividual variability in vincristine efficacy and toxicity. The current study quantifies the contribution of cytochromes P450 (P450s), including CYP3A4 and CYP3A5, to vincristine metabolism with a bank of human liver microsomes (HLMs). M1 was the major metabolite formed with HLMs, and selective chemical inhibition of P450s confirmed that CYP3A was the major metabolizing subfamily. The liver tissues were genotyped for low expression alleles, CYP3A5*3,*6, and *7, and the HLMs were phenotyped for CYP3A4 and CYP3A5 expression by Western blot. Testosterone 6β- hydroxylation and itraconazole hydroxylation were used to quantify CYP3A4 activity in the HLMs. For each CYP3A5 high expresser (n = 10), the rate of M1 formation from vincristine due to CYP3A5 was quantified by subtracting the CYP3A4 contribution as determined by linear regression with CYP3A5*3/ *3 samples. For CYP3A5 high expressers, the contribution of CYP3A5 to the metabolism of vincristine was 54 to 95% of the total activity, and the rate of M1 formation mediated by CYP3A5 correlated with CYP3A5 protein content (r 2 = 0.95). Selective inhibition of CYP3A4 demonstrated that the M1 formation rate with CYP3A5 high expressers was differentially inhibited based on CYP3A4 activity. Using median values, the estimated hepatic clearances were 5-fold higher for CYP3A5 high expressers than low expressers. We conclude that polymorphic expression of CYP3A5 may be a major determinant in the P450-mediated clearance of vincristine.

AB - Vincristine is preferentially metabolized to a secondary amine, M1, by CYP3A5 with a 9- to 14-fold higher intrinsic clearance than CYP3A4 using cDNA-expressed enzymes. The genetically polymorphic expression of CYP3A5 may contribute to interindividual variability in vincristine efficacy and toxicity. The current study quantifies the contribution of cytochromes P450 (P450s), including CYP3A4 and CYP3A5, to vincristine metabolism with a bank of human liver microsomes (HLMs). M1 was the major metabolite formed with HLMs, and selective chemical inhibition of P450s confirmed that CYP3A was the major metabolizing subfamily. The liver tissues were genotyped for low expression alleles, CYP3A5*3,*6, and *7, and the HLMs were phenotyped for CYP3A4 and CYP3A5 expression by Western blot. Testosterone 6β- hydroxylation and itraconazole hydroxylation were used to quantify CYP3A4 activity in the HLMs. For each CYP3A5 high expresser (n = 10), the rate of M1 formation from vincristine due to CYP3A5 was quantified by subtracting the CYP3A4 contribution as determined by linear regression with CYP3A5*3/ *3 samples. For CYP3A5 high expressers, the contribution of CYP3A5 to the metabolism of vincristine was 54 to 95% of the total activity, and the rate of M1 formation mediated by CYP3A5 correlated with CYP3A5 protein content (r 2 = 0.95). Selective inhibition of CYP3A4 demonstrated that the M1 formation rate with CYP3A5 high expressers was differentially inhibited based on CYP3A4 activity. Using median values, the estimated hepatic clearances were 5-fold higher for CYP3A5 high expressers than low expressers. We conclude that polymorphic expression of CYP3A5 may be a major determinant in the P450-mediated clearance of vincristine.

UR - http://www.scopus.com/inward/record.url?scp=34247371529&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247371529&partnerID=8YFLogxK

U2 - 10.1124/jpet.106.118471

DO - 10.1124/jpet.106.118471

M3 - Article

C2 - 17272675

AN - SCOPUS:34247371529

VL - 321

SP - 553

EP - 563

JO - Journal of Pharmacology and Experimental Therapeutics

JF - Journal of Pharmacology and Experimental Therapeutics

SN - 0022-3565

IS - 2

ER -