Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation

R. Huang, M. Li, M. Ye, K. Yang, X. Xu, Richard Gregory

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.

Original languageEnglish
Pages (from-to)7212-7218
Number of pages7
JournalApplied and Environmental Microbiology
Volume80
Issue number23
DOIs
StatePublished - 2014

Fingerprint

Streptococcus gordonii
Cell Aggregation
nicotine
Biofilms
Nicotine
biofilm
Growth
sucrose
cells
Sucrose
cell growth
Tooth
teeth
gene expression
cigarettes
tooth
microscopy
confocal laser scanning microscopy
Periodontal Diseases
laser

ASJC Scopus subject areas

  • Applied Microbiology and Biotechnology
  • Food Science
  • Biotechnology
  • Ecology

Cite this

Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation. / Huang, R.; Li, M.; Ye, M.; Yang, K.; Xu, X.; Gregory, Richard.

In: Applied and Environmental Microbiology, Vol. 80, No. 23, 2014, p. 7212-7218.

Research output: Contribution to journalArticle

@article{0dac78ca19da48e38241fafc284d1c0b,
title = "Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation",
abstract = "Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.",
author = "R. Huang and M. Li and M. Ye and K. Yang and X. Xu and Richard Gregory",
year = "2014",
doi = "10.1128/AEM.02395-14",
language = "English",
volume = "80",
pages = "7212--7218",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "23",

}

TY - JOUR

T1 - Effects of nicotine on Streptococcus gordonii growth, biofilm formation, and cell aggregation

AU - Huang, R.

AU - Li, M.

AU - Ye, M.

AU - Yang, K.

AU - Xu, X.

AU - Gregory, Richard

PY - 2014

Y1 - 2014

N2 - Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.

AB - Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.

UR - http://www.scopus.com/inward/record.url?scp=84910123922&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84910123922&partnerID=8YFLogxK

U2 - 10.1128/AEM.02395-14

DO - 10.1128/AEM.02395-14

M3 - Article

C2 - 25217021

AN - SCOPUS:84910123922

VL - 80

SP - 7212

EP - 7218

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 23

ER -