Effects of space flight and mixing on bacterial growth in low volume cultures

M. A. Kacena, B. Manfredi, P. Todd

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in space flight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly, identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

Original languageEnglish (US)
Pages (from-to)74-77
Number of pages4
JournalMicrogravity Science and Technology
Issue number2
StatePublished - Jan 1 1999
Externally publishedYes

ASJC Scopus subject areas

  • Modeling and Simulation
  • Engineering(all)
  • Physics and Astronomy(all)
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Effects of space flight and mixing on bacterial growth in low volume cultures'. Together they form a unique fingerprint.

Cite this