Effects of spatial segmentation in the continuous model of excitation propagation in cardiac muscle

Jiashin Wu, Douglas P. Zipes

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Introduction: Spatial segmentation is essential for the numerical simulation of excitation propagation in cardiac muscle. Methods and Results: This study evaluated the effects of spatial segmentation on action potential and on the velocity of propagation in a continuous one-dimensional model of cardiac muscle [intracellular and extracellular resistivities along (L) and transverse (T) to the muscle fibers: 402 Ωcm (R(i), L), 3,620 Ωcm (R(i), T), 48 Wcm (R(e), L), and 126 Ωcm (R(e), T), J of Physiol 255:335-346, 1976) and either Luo-Rudy (L-R, Circ Res 68:1501-1526, 1991) or Beeler-Reuter (B- R, J Physiol 268:177-210, 1977) ionic currents. Related cable equations for active membrane are derived. Spatial segmentations of < 31.2 μm (L, L-R), < 11.5 μm (T, L-R), < 44.7 μm (L, B-R), and < 16.5 μm (T, B-R) were required for < 1% errors in the characteristic parameters of action potential. Similarly, spatial segmentations of < 54.5 μm (L, L-R), < 20.1 μm (T, L- R), < 84.3 μm (L, B-R), and < 31.2 μm (T, B-R) were required for < 1% errors in the velocity of conduction. Conclusion: In general, spatial segmentations of < 26.9% and < 50.8% of the space constant of a fully activated membrane gave < 1.0% errors in the characteristic parameters of action potential and in the velocity of propagation, respectively, for both membranes. The action potential duration was relatively insensitive to the spatial segmentation. Our analysis suggests that λ(full) is a better criterion for the selection of spatial segmentation in numerical simulation than the space constant of the resting membrane.

Original languageEnglish
Pages (from-to)965-972
Number of pages8
JournalJournal of Cardiovascular Electrophysiology
Volume10
Issue number7
StatePublished - 1999

Fingerprint

Action Potentials
Myocardium
Membranes
Space Simulation
Patient Selection
Muscles

Keywords

  • Action potential
  • Anisotropy

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine
  • Physiology

Cite this

Effects of spatial segmentation in the continuous model of excitation propagation in cardiac muscle. / Wu, Jiashin; Zipes, Douglas P.

In: Journal of Cardiovascular Electrophysiology, Vol. 10, No. 7, 1999, p. 965-972.

Research output: Contribution to journalArticle

@article{1b78410c174645aa9a1428672f0c859d,
title = "Effects of spatial segmentation in the continuous model of excitation propagation in cardiac muscle",
abstract = "Introduction: Spatial segmentation is essential for the numerical simulation of excitation propagation in cardiac muscle. Methods and Results: This study evaluated the effects of spatial segmentation on action potential and on the velocity of propagation in a continuous one-dimensional model of cardiac muscle [intracellular and extracellular resistivities along (L) and transverse (T) to the muscle fibers: 402 Ωcm (R(i), L), 3,620 Ωcm (R(i), T), 48 Wcm (R(e), L), and 126 Ωcm (R(e), T), J of Physiol 255:335-346, 1976) and either Luo-Rudy (L-R, Circ Res 68:1501-1526, 1991) or Beeler-Reuter (B- R, J Physiol 268:177-210, 1977) ionic currents. Related cable equations for active membrane are derived. Spatial segmentations of < 31.2 μm (L, L-R), < 11.5 μm (T, L-R), < 44.7 μm (L, B-R), and < 16.5 μm (T, B-R) were required for < 1{\%} errors in the characteristic parameters of action potential. Similarly, spatial segmentations of < 54.5 μm (L, L-R), < 20.1 μm (T, L- R), < 84.3 μm (L, B-R), and < 31.2 μm (T, B-R) were required for < 1{\%} errors in the velocity of conduction. Conclusion: In general, spatial segmentations of < 26.9{\%} and < 50.8{\%} of the space constant of a fully activated membrane gave < 1.0{\%} errors in the characteristic parameters of action potential and in the velocity of propagation, respectively, for both membranes. The action potential duration was relatively insensitive to the spatial segmentation. Our analysis suggests that λ(full) is a better criterion for the selection of spatial segmentation in numerical simulation than the space constant of the resting membrane.",
keywords = "Action potential, Anisotropy",
author = "Jiashin Wu and Zipes, {Douglas P.}",
year = "1999",
language = "English",
volume = "10",
pages = "965--972",
journal = "Journal of Cardiovascular Electrophysiology",
issn = "1045-3873",
publisher = "Wiley-Blackwell",
number = "7",

}

TY - JOUR

T1 - Effects of spatial segmentation in the continuous model of excitation propagation in cardiac muscle

AU - Wu, Jiashin

AU - Zipes, Douglas P.

PY - 1999

Y1 - 1999

N2 - Introduction: Spatial segmentation is essential for the numerical simulation of excitation propagation in cardiac muscle. Methods and Results: This study evaluated the effects of spatial segmentation on action potential and on the velocity of propagation in a continuous one-dimensional model of cardiac muscle [intracellular and extracellular resistivities along (L) and transverse (T) to the muscle fibers: 402 Ωcm (R(i), L), 3,620 Ωcm (R(i), T), 48 Wcm (R(e), L), and 126 Ωcm (R(e), T), J of Physiol 255:335-346, 1976) and either Luo-Rudy (L-R, Circ Res 68:1501-1526, 1991) or Beeler-Reuter (B- R, J Physiol 268:177-210, 1977) ionic currents. Related cable equations for active membrane are derived. Spatial segmentations of < 31.2 μm (L, L-R), < 11.5 μm (T, L-R), < 44.7 μm (L, B-R), and < 16.5 μm (T, B-R) were required for < 1% errors in the characteristic parameters of action potential. Similarly, spatial segmentations of < 54.5 μm (L, L-R), < 20.1 μm (T, L- R), < 84.3 μm (L, B-R), and < 31.2 μm (T, B-R) were required for < 1% errors in the velocity of conduction. Conclusion: In general, spatial segmentations of < 26.9% and < 50.8% of the space constant of a fully activated membrane gave < 1.0% errors in the characteristic parameters of action potential and in the velocity of propagation, respectively, for both membranes. The action potential duration was relatively insensitive to the spatial segmentation. Our analysis suggests that λ(full) is a better criterion for the selection of spatial segmentation in numerical simulation than the space constant of the resting membrane.

AB - Introduction: Spatial segmentation is essential for the numerical simulation of excitation propagation in cardiac muscle. Methods and Results: This study evaluated the effects of spatial segmentation on action potential and on the velocity of propagation in a continuous one-dimensional model of cardiac muscle [intracellular and extracellular resistivities along (L) and transverse (T) to the muscle fibers: 402 Ωcm (R(i), L), 3,620 Ωcm (R(i), T), 48 Wcm (R(e), L), and 126 Ωcm (R(e), T), J of Physiol 255:335-346, 1976) and either Luo-Rudy (L-R, Circ Res 68:1501-1526, 1991) or Beeler-Reuter (B- R, J Physiol 268:177-210, 1977) ionic currents. Related cable equations for active membrane are derived. Spatial segmentations of < 31.2 μm (L, L-R), < 11.5 μm (T, L-R), < 44.7 μm (L, B-R), and < 16.5 μm (T, B-R) were required for < 1% errors in the characteristic parameters of action potential. Similarly, spatial segmentations of < 54.5 μm (L, L-R), < 20.1 μm (T, L- R), < 84.3 μm (L, B-R), and < 31.2 μm (T, B-R) were required for < 1% errors in the velocity of conduction. Conclusion: In general, spatial segmentations of < 26.9% and < 50.8% of the space constant of a fully activated membrane gave < 1.0% errors in the characteristic parameters of action potential and in the velocity of propagation, respectively, for both membranes. The action potential duration was relatively insensitive to the spatial segmentation. Our analysis suggests that λ(full) is a better criterion for the selection of spatial segmentation in numerical simulation than the space constant of the resting membrane.

KW - Action potential

KW - Anisotropy

UR - http://www.scopus.com/inward/record.url?scp=0032992527&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032992527&partnerID=8YFLogxK

M3 - Article

VL - 10

SP - 965

EP - 972

JO - Journal of Cardiovascular Electrophysiology

JF - Journal of Cardiovascular Electrophysiology

SN - 1045-3873

IS - 7

ER -