Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution

Y. Takano, C. H. Turner, I. Owan, R. B. Martin, S. T. Lau, M. R. Forwood, David Burr

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

There is evidence that the collagen microarchitecture of bone is influenced by mechanical stresses or strains. We hypothesized that peak functional strains correlate with the elastic anisotropy and collagen orientation of bone tissue and that the bone anisotropy might be changed by altering the strain patterns in canine radii for 12 months. We tested these hypotheses in studies using nine adult foxhounds. The baseline group (n = 3) had three rosette strain gauges placed around the midshaft of the radius, and strain distributions were measured during walking. The osteotomy group (n = 3) had 2 cm of the ulna surgically removed, and the sham group (n = 3) received a sham osteotomy. The osteotomy and sham groups were allowed free movement in cages with runs for 12 months, after which strain distributions were measured on the radii during walking. Bone-tissue anisotropy and collagen architecture were measured in radii from which the in vivo longitudinal strain patterns had been measured. The collagen birefringence patterns were measured with use of a circularly polarized light technique, and the elastic anisotropy of the bone, mineral, and collagen matrix was evaluated with a novel acoustic microscopy technique. Peak longitudinal strains in the radius correlated with the normalized longitudinal structure index (a polarized light measure of collagen birefringence) and the tissue anisotropy ratio. The average anisotropy ratio was 1.28 ± 0.01 in the posterior (compressive) cortex and 1.43 ± 0.01 in the anterior (tensile) cortex (these values are significantly different at p < 0.0001). The ulnar osteotomy changed the strain pattern on the radius, causing increased tensile strains in the medial cortex by more than 5-fold that were associated with a significant increase in the anisotropy ratio in the bone tissue. The longitudinal structure index was strongly correlated (r = 0.62, p < 0.005) with the anisotropy ratio of demineralized bone but was not correlated with that of deproteinized bone; this indicates that it reflects collagen fibril orientation in the bone matrix. These results indicate that mechanical strains affect both collagen and mineral microarchitecture in bone tissue, i.e., tensile strains are associated with increased tissue anisotropy and compressive strains, with decreased anisotropy.

Original languageEnglish
Pages (from-to)59-66
Number of pages8
JournalJournal of Orthopaedic Research
Volume17
Issue number1
DOIs
StatePublished - Jan 1999

Fingerprint

Anisotropy
Collagen
Bone and Bones
Osteotomy
Birefringence
Walking
Minerals
Acoustic Microscopy
Light
Ulna
Mechanical Stress
Bone Matrix
Canidae

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

Cite this

Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. / Takano, Y.; Turner, C. H.; Owan, I.; Martin, R. B.; Lau, S. T.; Forwood, M. R.; Burr, David.

In: Journal of Orthopaedic Research, Vol. 17, No. 1, 01.1999, p. 59-66.

Research output: Contribution to journalArticle

Takano, Y. ; Turner, C. H. ; Owan, I. ; Martin, R. B. ; Lau, S. T. ; Forwood, M. R. ; Burr, David. / Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution. In: Journal of Orthopaedic Research. 1999 ; Vol. 17, No. 1. pp. 59-66.
@article{2f9862b81cce4b058db58fbe3667d2d7,
title = "Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution",
abstract = "There is evidence that the collagen microarchitecture of bone is influenced by mechanical stresses or strains. We hypothesized that peak functional strains correlate with the elastic anisotropy and collagen orientation of bone tissue and that the bone anisotropy might be changed by altering the strain patterns in canine radii for 12 months. We tested these hypotheses in studies using nine adult foxhounds. The baseline group (n = 3) had three rosette strain gauges placed around the midshaft of the radius, and strain distributions were measured during walking. The osteotomy group (n = 3) had 2 cm of the ulna surgically removed, and the sham group (n = 3) received a sham osteotomy. The osteotomy and sham groups were allowed free movement in cages with runs for 12 months, after which strain distributions were measured on the radii during walking. Bone-tissue anisotropy and collagen architecture were measured in radii from which the in vivo longitudinal strain patterns had been measured. The collagen birefringence patterns were measured with use of a circularly polarized light technique, and the elastic anisotropy of the bone, mineral, and collagen matrix was evaluated with a novel acoustic microscopy technique. Peak longitudinal strains in the radius correlated with the normalized longitudinal structure index (a polarized light measure of collagen birefringence) and the tissue anisotropy ratio. The average anisotropy ratio was 1.28 ± 0.01 in the posterior (compressive) cortex and 1.43 ± 0.01 in the anterior (tensile) cortex (these values are significantly different at p < 0.0001). The ulnar osteotomy changed the strain pattern on the radius, causing increased tensile strains in the medial cortex by more than 5-fold that were associated with a significant increase in the anisotropy ratio in the bone tissue. The longitudinal structure index was strongly correlated (r = 0.62, p < 0.005) with the anisotropy ratio of demineralized bone but was not correlated with that of deproteinized bone; this indicates that it reflects collagen fibril orientation in the bone matrix. These results indicate that mechanical strains affect both collagen and mineral microarchitecture in bone tissue, i.e., tensile strains are associated with increased tissue anisotropy and compressive strains, with decreased anisotropy.",
author = "Y. Takano and Turner, {C. H.} and I. Owan and Martin, {R. B.} and Lau, {S. T.} and Forwood, {M. R.} and David Burr",
year = "1999",
month = "1",
doi = "10.1002/jor.1100170110",
language = "English",
volume = "17",
pages = "59--66",
journal = "Journal of Orthopaedic Research",
issn = "0736-0266",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution

AU - Takano, Y.

AU - Turner, C. H.

AU - Owan, I.

AU - Martin, R. B.

AU - Lau, S. T.

AU - Forwood, M. R.

AU - Burr, David

PY - 1999/1

Y1 - 1999/1

N2 - There is evidence that the collagen microarchitecture of bone is influenced by mechanical stresses or strains. We hypothesized that peak functional strains correlate with the elastic anisotropy and collagen orientation of bone tissue and that the bone anisotropy might be changed by altering the strain patterns in canine radii for 12 months. We tested these hypotheses in studies using nine adult foxhounds. The baseline group (n = 3) had three rosette strain gauges placed around the midshaft of the radius, and strain distributions were measured during walking. The osteotomy group (n = 3) had 2 cm of the ulna surgically removed, and the sham group (n = 3) received a sham osteotomy. The osteotomy and sham groups were allowed free movement in cages with runs for 12 months, after which strain distributions were measured on the radii during walking. Bone-tissue anisotropy and collagen architecture were measured in radii from which the in vivo longitudinal strain patterns had been measured. The collagen birefringence patterns were measured with use of a circularly polarized light technique, and the elastic anisotropy of the bone, mineral, and collagen matrix was evaluated with a novel acoustic microscopy technique. Peak longitudinal strains in the radius correlated with the normalized longitudinal structure index (a polarized light measure of collagen birefringence) and the tissue anisotropy ratio. The average anisotropy ratio was 1.28 ± 0.01 in the posterior (compressive) cortex and 1.43 ± 0.01 in the anterior (tensile) cortex (these values are significantly different at p < 0.0001). The ulnar osteotomy changed the strain pattern on the radius, causing increased tensile strains in the medial cortex by more than 5-fold that were associated with a significant increase in the anisotropy ratio in the bone tissue. The longitudinal structure index was strongly correlated (r = 0.62, p < 0.005) with the anisotropy ratio of demineralized bone but was not correlated with that of deproteinized bone; this indicates that it reflects collagen fibril orientation in the bone matrix. These results indicate that mechanical strains affect both collagen and mineral microarchitecture in bone tissue, i.e., tensile strains are associated with increased tissue anisotropy and compressive strains, with decreased anisotropy.

AB - There is evidence that the collagen microarchitecture of bone is influenced by mechanical stresses or strains. We hypothesized that peak functional strains correlate with the elastic anisotropy and collagen orientation of bone tissue and that the bone anisotropy might be changed by altering the strain patterns in canine radii for 12 months. We tested these hypotheses in studies using nine adult foxhounds. The baseline group (n = 3) had three rosette strain gauges placed around the midshaft of the radius, and strain distributions were measured during walking. The osteotomy group (n = 3) had 2 cm of the ulna surgically removed, and the sham group (n = 3) received a sham osteotomy. The osteotomy and sham groups were allowed free movement in cages with runs for 12 months, after which strain distributions were measured on the radii during walking. Bone-tissue anisotropy and collagen architecture were measured in radii from which the in vivo longitudinal strain patterns had been measured. The collagen birefringence patterns were measured with use of a circularly polarized light technique, and the elastic anisotropy of the bone, mineral, and collagen matrix was evaluated with a novel acoustic microscopy technique. Peak longitudinal strains in the radius correlated with the normalized longitudinal structure index (a polarized light measure of collagen birefringence) and the tissue anisotropy ratio. The average anisotropy ratio was 1.28 ± 0.01 in the posterior (compressive) cortex and 1.43 ± 0.01 in the anterior (tensile) cortex (these values are significantly different at p < 0.0001). The ulnar osteotomy changed the strain pattern on the radius, causing increased tensile strains in the medial cortex by more than 5-fold that were associated with a significant increase in the anisotropy ratio in the bone tissue. The longitudinal structure index was strongly correlated (r = 0.62, p < 0.005) with the anisotropy ratio of demineralized bone but was not correlated with that of deproteinized bone; this indicates that it reflects collagen fibril orientation in the bone matrix. These results indicate that mechanical strains affect both collagen and mineral microarchitecture in bone tissue, i.e., tensile strains are associated with increased tissue anisotropy and compressive strains, with decreased anisotropy.

UR - http://www.scopus.com/inward/record.url?scp=0033016917&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033016917&partnerID=8YFLogxK

U2 - 10.1002/jor.1100170110

DO - 10.1002/jor.1100170110

M3 - Article

VL - 17

SP - 59

EP - 66

JO - Journal of Orthopaedic Research

JF - Journal of Orthopaedic Research

SN - 0736-0266

IS - 1

ER -