Epigenetic regulation of the neural transcriptome and alcohol interference during development

Marisol Resendiz, Steven Mason, Chiao Ling Lo, Feng C. Zhou

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

Alcohol intoxicated cells broadly alter their metabolites-- among them methyl and acetic acid can alter the DNA and histone epigenetic codes. Together with the promiscuous effect of alcohol on enzyme activities (including DNA methyltransferases) and the downstream effect on microRNA and transposable elements, alcohol is well placed to affect intrinsic transcriptional programs of developing cells. Considering that the developmental consequences of early alcohol exposure so profoundly affect neural systems, it is not unfounded to reason that alcohol exploits transcriptional regulators to challenge canonical gene expression and in effect, intrinsic developmental pathways to achieve widespread damage in the developing nervous system. To fully evaluate the role of epigenetic regulation in alcohol-related developmental disease, it is important to first gather the targets of epigenetic players in neurodevelopmental models. Here, we attempt to review the cellular and genomic windows of opportunity for alcohol to act on intrinsic neurodevelopmental programs. We also discuss some established targets of fetal alcohol exposure and propose pathways for future study. Overall, this review hopes to illustrate the known epigenetic program and its alterations in normal neural stem cell development and further, aims to depict how alcohol, through neuroepigenetics, may lead to neurodevelopmental deficits observed in fetal alcohol spectrum disorders.

Original languageEnglish (US)
Article numberArticle 285
JournalFrontiers in Genetics
Volume5
Issue numberAUG
DOIs
StatePublished - Jan 1 2014

    Fingerprint

Keywords

  • DNA methylation
  • Epigenomics
  • Gene-environment interaction
  • Histone modification
  • MiRNA
  • Neural developmental pathway
  • Neural stem cells
  • Neuroepigenetics

ASJC Scopus subject areas

  • Genetics
  • Molecular Medicine
  • Genetics(clinical)

Cite this