Epigenetics of gene expression in human hepatoma cells: Expression profiling the response to inhibition of DNA methylation and histone deacetylation

Luke O. Dannenberg, Howard Edenberg

Research output: Contribution to journalArticle

113 Citations (Scopus)

Abstract

Background: DNA methylation and histone deacetylation are epigenetic mechanisms that play major roles in eukaryotic gene regulation. We hypothesize that many genes in the human hepatoma cell line HepG2 are regulated by DNA methylation and histone deacetylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) to inhibit DNA methylation with and/or Trichostatin A (TSA) to inhibit histone deacetylation should allow us to identify genes that are regulated epigenetically in hepatoma cells. Results: 5-aza-dC had a much larger effect on gene expression in HepG2 cells than did TSA, as measured using Affymetrix® HG-U133 Plus 2.0 microarrays. The expression of 1504 probe sets was affected by 5-aza-dC (at p < 0.01), 535 probe sets by TSA, and 1929 probe sets by the combination of 5-aza-dC and TSA. 5-aza-dC treatment turned on the expression of 211 probe sets that were not detectably expressed in its absence. Expression of imprinted genes regulated by DNA methylation, such as H19 and NNAT, was turned on or greatly increased in response to 5-aza-dC. Genes involved in liver processes such as xenobiotic metabolism (CYP3A4, CYP3A5, and CYP3A7) and steroid biosynthesis (CYP17A1 and CYP19A1), and genes encoding CCAAT element-binding proteins (C/EBPα, C/EBPβ, and C/EBPγ) were affected by 5-aza-dC or the combination. Many of the genes that fall within these groups are also expressed in the developing fetal liver and adult liver. Quantitative real-time RT-PCR assays confirmed selected gene expression changes seen in microarray analyses. Conclusion: Epigenetics play a role in regulating the expression of several genes involved in essential liver processes such as xenobiotic metabolism and steroid biosynthesis in HepG2 cells. Many genes whose expression is normally silenced in these hepatoma cells were re-expressed by 5-aza-dC treatment. DNA methylation may be a factor in restricting the expression of fetal genes during liver development and in shutting down expression in hepatoma cells.

Original languageEnglish
Article number181
JournalBMC Genomics
Volume7
DOIs
StatePublished - Jul 19 2006

Fingerprint

decitabine
DNA Methylation
Epigenomics
Histones
Hepatocellular Carcinoma
trichostatin A
Gene Expression
Liver
Genes
Cytochrome P-450 CYP3A
Hep G2 Cells
Xenobiotics
Steroids
Microarray Analysis
Protein C

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{14196e7d4266434aad5e57c480c2d12d,
title = "Epigenetics of gene expression in human hepatoma cells: Expression profiling the response to inhibition of DNA methylation and histone deacetylation",
abstract = "Background: DNA methylation and histone deacetylation are epigenetic mechanisms that play major roles in eukaryotic gene regulation. We hypothesize that many genes in the human hepatoma cell line HepG2 are regulated by DNA methylation and histone deacetylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) to inhibit DNA methylation with and/or Trichostatin A (TSA) to inhibit histone deacetylation should allow us to identify genes that are regulated epigenetically in hepatoma cells. Results: 5-aza-dC had a much larger effect on gene expression in HepG2 cells than did TSA, as measured using Affymetrix{\circledR} HG-U133 Plus 2.0 microarrays. The expression of 1504 probe sets was affected by 5-aza-dC (at p < 0.01), 535 probe sets by TSA, and 1929 probe sets by the combination of 5-aza-dC and TSA. 5-aza-dC treatment turned on the expression of 211 probe sets that were not detectably expressed in its absence. Expression of imprinted genes regulated by DNA methylation, such as H19 and NNAT, was turned on or greatly increased in response to 5-aza-dC. Genes involved in liver processes such as xenobiotic metabolism (CYP3A4, CYP3A5, and CYP3A7) and steroid biosynthesis (CYP17A1 and CYP19A1), and genes encoding CCAAT element-binding proteins (C/EBPα, C/EBPβ, and C/EBPγ) were affected by 5-aza-dC or the combination. Many of the genes that fall within these groups are also expressed in the developing fetal liver and adult liver. Quantitative real-time RT-PCR assays confirmed selected gene expression changes seen in microarray analyses. Conclusion: Epigenetics play a role in regulating the expression of several genes involved in essential liver processes such as xenobiotic metabolism and steroid biosynthesis in HepG2 cells. Many genes whose expression is normally silenced in these hepatoma cells were re-expressed by 5-aza-dC treatment. DNA methylation may be a factor in restricting the expression of fetal genes during liver development and in shutting down expression in hepatoma cells.",
author = "Dannenberg, {Luke O.} and Howard Edenberg",
year = "2006",
month = "7",
day = "19",
doi = "10.1186/1471-2164-7-181",
language = "English",
volume = "7",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Epigenetics of gene expression in human hepatoma cells

T2 - Expression profiling the response to inhibition of DNA methylation and histone deacetylation

AU - Dannenberg, Luke O.

AU - Edenberg, Howard

PY - 2006/7/19

Y1 - 2006/7/19

N2 - Background: DNA methylation and histone deacetylation are epigenetic mechanisms that play major roles in eukaryotic gene regulation. We hypothesize that many genes in the human hepatoma cell line HepG2 are regulated by DNA methylation and histone deacetylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) to inhibit DNA methylation with and/or Trichostatin A (TSA) to inhibit histone deacetylation should allow us to identify genes that are regulated epigenetically in hepatoma cells. Results: 5-aza-dC had a much larger effect on gene expression in HepG2 cells than did TSA, as measured using Affymetrix® HG-U133 Plus 2.0 microarrays. The expression of 1504 probe sets was affected by 5-aza-dC (at p < 0.01), 535 probe sets by TSA, and 1929 probe sets by the combination of 5-aza-dC and TSA. 5-aza-dC treatment turned on the expression of 211 probe sets that were not detectably expressed in its absence. Expression of imprinted genes regulated by DNA methylation, such as H19 and NNAT, was turned on or greatly increased in response to 5-aza-dC. Genes involved in liver processes such as xenobiotic metabolism (CYP3A4, CYP3A5, and CYP3A7) and steroid biosynthesis (CYP17A1 and CYP19A1), and genes encoding CCAAT element-binding proteins (C/EBPα, C/EBPβ, and C/EBPγ) were affected by 5-aza-dC or the combination. Many of the genes that fall within these groups are also expressed in the developing fetal liver and adult liver. Quantitative real-time RT-PCR assays confirmed selected gene expression changes seen in microarray analyses. Conclusion: Epigenetics play a role in regulating the expression of several genes involved in essential liver processes such as xenobiotic metabolism and steroid biosynthesis in HepG2 cells. Many genes whose expression is normally silenced in these hepatoma cells were re-expressed by 5-aza-dC treatment. DNA methylation may be a factor in restricting the expression of fetal genes during liver development and in shutting down expression in hepatoma cells.

AB - Background: DNA methylation and histone deacetylation are epigenetic mechanisms that play major roles in eukaryotic gene regulation. We hypothesize that many genes in the human hepatoma cell line HepG2 are regulated by DNA methylation and histone deacetylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) to inhibit DNA methylation with and/or Trichostatin A (TSA) to inhibit histone deacetylation should allow us to identify genes that are regulated epigenetically in hepatoma cells. Results: 5-aza-dC had a much larger effect on gene expression in HepG2 cells than did TSA, as measured using Affymetrix® HG-U133 Plus 2.0 microarrays. The expression of 1504 probe sets was affected by 5-aza-dC (at p < 0.01), 535 probe sets by TSA, and 1929 probe sets by the combination of 5-aza-dC and TSA. 5-aza-dC treatment turned on the expression of 211 probe sets that were not detectably expressed in its absence. Expression of imprinted genes regulated by DNA methylation, such as H19 and NNAT, was turned on or greatly increased in response to 5-aza-dC. Genes involved in liver processes such as xenobiotic metabolism (CYP3A4, CYP3A5, and CYP3A7) and steroid biosynthesis (CYP17A1 and CYP19A1), and genes encoding CCAAT element-binding proteins (C/EBPα, C/EBPβ, and C/EBPγ) were affected by 5-aza-dC or the combination. Many of the genes that fall within these groups are also expressed in the developing fetal liver and adult liver. Quantitative real-time RT-PCR assays confirmed selected gene expression changes seen in microarray analyses. Conclusion: Epigenetics play a role in regulating the expression of several genes involved in essential liver processes such as xenobiotic metabolism and steroid biosynthesis in HepG2 cells. Many genes whose expression is normally silenced in these hepatoma cells were re-expressed by 5-aza-dC treatment. DNA methylation may be a factor in restricting the expression of fetal genes during liver development and in shutting down expression in hepatoma cells.

UR - http://www.scopus.com/inward/record.url?scp=33749154491&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749154491&partnerID=8YFLogxK

U2 - 10.1186/1471-2164-7-181

DO - 10.1186/1471-2164-7-181

M3 - Article

C2 - 16854234

AN - SCOPUS:33749154491

VL - 7

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

M1 - 181

ER -