Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging

R. B. Gibbs, K. J. Jones, B. Moorjani, V. Luine

Research output: Contribution to journalArticle

129 Scopus citations

Abstract

Estrogen replacement can significantly affect the expression of ChAT and NGF receptors in specific basal forebrain cholinergic neurons. The time-course of the effects is consistent with a direct up-regulation of ChAT followed by either direct or indirect down-regulation of p75(NGFR) and trkA NGF receptors, possibly due to increased cholinergic activity in the hippocampal formation and cortex and a decrease in hippocampal levels of NGF. Current evidence suggests ChAT, p75(NGFR) trkA, and NGF all play a role in regulating cholinergic function in the hippocampal formation and cortex. In addition, all have been implicated in the maintenance of normal learning and memory processes as well as in changes in cognitive function associated with aging and with neurodegenerative disease. It is possible that estrogen may affect cognitive function via effects on NGF-related systems and basal forebrain cholinergic neurons. Effects of estrogen on cognitive function have been reported, as has some preliminary evidence for beneficial effects of estrogen in decreasing the prevalence of and reducing some cognitive deficits associated with Alzheimer's disease. Whether these effects are related to effects on NGF-related systems or basal forebrain cholinergic neurons is currently unknown. Indirect evidence suggests that estrogen interacts with NGF-related systems and that changes in circulating levels of estrogen can contribute to age-related changes in hippocampal levels of NGF. These findings have important implications for consideration of estrogen replacement therapy in pre- and post-menopausal women. Further studies examining effects of different regimens of estrogen replacement as well as estrogen combined with progesterone on NGF and basal forebrain cholinergic neurons in young and aged animals are required. Prospective studies correlating aging and estrogen replacement with numbers of basal forebrain cholinergic neurons and hippocampal and cortical levels of NGF also need to be performed to better assess the potential benefits of estrogen replacement in reducing age- and disease-related cognitive decline.

Original languageEnglish (US)
Pages (from-to)165-196
Number of pages32
JournalAnnals of the New York Academy of Sciences
Volume743
DOIs
StatePublished - Jan 1 1994
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

Fingerprint Dive into the research topics of 'Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging'. Together they form a unique fingerprint.

  • Cite this