Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum

Xiao-Ming Xu, G. F. Martin

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

We have shown previously that rubral axons can grow around a lesion of their spinal pathway in the developing opossum and that a critical period exists for that plasticity (Martin and Xu, Dev Brain Res 39:303, 1988). Since most rubrospinal neurons degenerate after axotomy during the critical period, we have proposed that plasticity results primarily from growth of late arriving axons around the lesion rather than regeneration of cut axons (Xu and Martin, J Comp Neurol 279:368, 1989). In the present study, we used a double-labeling paradigm to test that hypothesis. Four groups of pouch young opossums received bilateral or unilateral injections of Fast Blue (FB) into the caudal thoracic or rostral lumbar cord (T12-L2) at different ages in order to label rubrospinal neurons. Three or 4 days later, the rubrospinal tract was transected unilaterally, four to five segments rostral to the injection(s). If the injection was unilateral, the lesion was made ipsilateral to it. The animals were maintained for about 1 month before a second marker, Diamidino Yellow (DY), was injected, usually bilaterally, between the FB injection(s) and the lesion. The animals were maintained for about 5 days before sacrifice and sections through the red nucleus and spinal cord were examined with a fluorescence microscope. During the critical period for plasticity, only a few rubral neurons contralateral to the lesion were labeled by FB alone, supporting our previous contention that most axotomized neurons degenerate. In contrast, many neurons were labeled by DY alone, indicating that their axons were not present in the caudal cord at the time of the FB injection and that they grew around the lesion during the 1 month survival to incorporate DY. A few double-labeled neurons were also found. One interpretation of such neurons is that they survived axotomy, as evidenced by the presence of FB, and supported axons which grew around the lesion to take up DY. Another interpretation is that they supported late growing axons which incorporated residual FB as well as DY. In order to choose between these alternatives, a similar double-labeling paradigm was carried out, but with removal of FB at the time of the lesion. Since a few neurons were still double labeled, we conclude that regeneration of cut axons also contributed to rubrospinal plasticity. Our results support our previous suggestion that developmental plasticity of the rubrospinal tract results primarily from growth of late arriving axons around the lesion, but they also suggest that regeneration of cut axons occurs.

Original languageEnglish (US)
Pages (from-to)103-112
Number of pages10
JournalJournal of Comparative Neurology
Volume313
Issue number1
StatePublished - 1991
Externally publishedYes

Fingerprint

Didelphis
Axons
Regeneration
Neurons
Growth
Injections
Opossums
Axotomy
Spinal Cord
Red Nucleus
diamidino compound 253-50
Thorax
Fluorescence
diamidino yellow

Keywords

  • axotomy
  • marsupial
  • red nucleus
  • spinal cord

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{4db5d101716e4c70861a4ba8704ed105,
title = "Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum",
abstract = "We have shown previously that rubral axons can grow around a lesion of their spinal pathway in the developing opossum and that a critical period exists for that plasticity (Martin and Xu, Dev Brain Res 39:303, 1988). Since most rubrospinal neurons degenerate after axotomy during the critical period, we have proposed that plasticity results primarily from growth of late arriving axons around the lesion rather than regeneration of cut axons (Xu and Martin, J Comp Neurol 279:368, 1989). In the present study, we used a double-labeling paradigm to test that hypothesis. Four groups of pouch young opossums received bilateral or unilateral injections of Fast Blue (FB) into the caudal thoracic or rostral lumbar cord (T12-L2) at different ages in order to label rubrospinal neurons. Three or 4 days later, the rubrospinal tract was transected unilaterally, four to five segments rostral to the injection(s). If the injection was unilateral, the lesion was made ipsilateral to it. The animals were maintained for about 1 month before a second marker, Diamidino Yellow (DY), was injected, usually bilaterally, between the FB injection(s) and the lesion. The animals were maintained for about 5 days before sacrifice and sections through the red nucleus and spinal cord were examined with a fluorescence microscope. During the critical period for plasticity, only a few rubral neurons contralateral to the lesion were labeled by FB alone, supporting our previous contention that most axotomized neurons degenerate. In contrast, many neurons were labeled by DY alone, indicating that their axons were not present in the caudal cord at the time of the FB injection and that they grew around the lesion during the 1 month survival to incorporate DY. A few double-labeled neurons were also found. One interpretation of such neurons is that they survived axotomy, as evidenced by the presence of FB, and supported axons which grew around the lesion to take up DY. Another interpretation is that they supported late growing axons which incorporated residual FB as well as DY. In order to choose between these alternatives, a similar double-labeling paradigm was carried out, but with removal of FB at the time of the lesion. Since a few neurons were still double labeled, we conclude that regeneration of cut axons also contributed to rubrospinal plasticity. Our results support our previous suggestion that developmental plasticity of the rubrospinal tract results primarily from growth of late arriving axons around the lesion, but they also suggest that regeneration of cut axons occurs.",
keywords = "axotomy, marsupial, red nucleus, spinal cord",
author = "Xiao-Ming Xu and Martin, {G. F.}",
year = "1991",
language = "English (US)",
volume = "313",
pages = "103--112",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum

AU - Xu, Xiao-Ming

AU - Martin, G. F.

PY - 1991

Y1 - 1991

N2 - We have shown previously that rubral axons can grow around a lesion of their spinal pathway in the developing opossum and that a critical period exists for that plasticity (Martin and Xu, Dev Brain Res 39:303, 1988). Since most rubrospinal neurons degenerate after axotomy during the critical period, we have proposed that plasticity results primarily from growth of late arriving axons around the lesion rather than regeneration of cut axons (Xu and Martin, J Comp Neurol 279:368, 1989). In the present study, we used a double-labeling paradigm to test that hypothesis. Four groups of pouch young opossums received bilateral or unilateral injections of Fast Blue (FB) into the caudal thoracic or rostral lumbar cord (T12-L2) at different ages in order to label rubrospinal neurons. Three or 4 days later, the rubrospinal tract was transected unilaterally, four to five segments rostral to the injection(s). If the injection was unilateral, the lesion was made ipsilateral to it. The animals were maintained for about 1 month before a second marker, Diamidino Yellow (DY), was injected, usually bilaterally, between the FB injection(s) and the lesion. The animals were maintained for about 5 days before sacrifice and sections through the red nucleus and spinal cord were examined with a fluorescence microscope. During the critical period for plasticity, only a few rubral neurons contralateral to the lesion were labeled by FB alone, supporting our previous contention that most axotomized neurons degenerate. In contrast, many neurons were labeled by DY alone, indicating that their axons were not present in the caudal cord at the time of the FB injection and that they grew around the lesion during the 1 month survival to incorporate DY. A few double-labeled neurons were also found. One interpretation of such neurons is that they survived axotomy, as evidenced by the presence of FB, and supported axons which grew around the lesion to take up DY. Another interpretation is that they supported late growing axons which incorporated residual FB as well as DY. In order to choose between these alternatives, a similar double-labeling paradigm was carried out, but with removal of FB at the time of the lesion. Since a few neurons were still double labeled, we conclude that regeneration of cut axons also contributed to rubrospinal plasticity. Our results support our previous suggestion that developmental plasticity of the rubrospinal tract results primarily from growth of late arriving axons around the lesion, but they also suggest that regeneration of cut axons occurs.

AB - We have shown previously that rubral axons can grow around a lesion of their spinal pathway in the developing opossum and that a critical period exists for that plasticity (Martin and Xu, Dev Brain Res 39:303, 1988). Since most rubrospinal neurons degenerate after axotomy during the critical period, we have proposed that plasticity results primarily from growth of late arriving axons around the lesion rather than regeneration of cut axons (Xu and Martin, J Comp Neurol 279:368, 1989). In the present study, we used a double-labeling paradigm to test that hypothesis. Four groups of pouch young opossums received bilateral or unilateral injections of Fast Blue (FB) into the caudal thoracic or rostral lumbar cord (T12-L2) at different ages in order to label rubrospinal neurons. Three or 4 days later, the rubrospinal tract was transected unilaterally, four to five segments rostral to the injection(s). If the injection was unilateral, the lesion was made ipsilateral to it. The animals were maintained for about 1 month before a second marker, Diamidino Yellow (DY), was injected, usually bilaterally, between the FB injection(s) and the lesion. The animals were maintained for about 5 days before sacrifice and sections through the red nucleus and spinal cord were examined with a fluorescence microscope. During the critical period for plasticity, only a few rubral neurons contralateral to the lesion were labeled by FB alone, supporting our previous contention that most axotomized neurons degenerate. In contrast, many neurons were labeled by DY alone, indicating that their axons were not present in the caudal cord at the time of the FB injection and that they grew around the lesion during the 1 month survival to incorporate DY. A few double-labeled neurons were also found. One interpretation of such neurons is that they survived axotomy, as evidenced by the presence of FB, and supported axons which grew around the lesion to take up DY. Another interpretation is that they supported late growing axons which incorporated residual FB as well as DY. In order to choose between these alternatives, a similar double-labeling paradigm was carried out, but with removal of FB at the time of the lesion. Since a few neurons were still double labeled, we conclude that regeneration of cut axons also contributed to rubrospinal plasticity. Our results support our previous suggestion that developmental plasticity of the rubrospinal tract results primarily from growth of late arriving axons around the lesion, but they also suggest that regeneration of cut axons occurs.

KW - axotomy

KW - marsupial

KW - red nucleus

KW - spinal cord

UR - http://www.scopus.com/inward/record.url?scp=0025948964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025948964&partnerID=8YFLogxK

M3 - Article

C2 - 1761748

AN - SCOPUS:0025948964

VL - 313

SP - 103

EP - 112

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 1

ER -