Further evidence of extrinsic forces in bending of the neural plate

Jodi Smith, G. C. Schoenwolf

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Bending of the neural plate has long been considered to be driven by principally intrinsic forces generated by wedging of neurepithelial cells. Our previous studies have shown that during neural fold elevation, significant neurepithelial cell wedging occurs only within the median hinge point (MHP), the midline region of neural plate anchored to the notochord. We have also shown that neural fold elevation can still occur when MHP cells are prevented from becoming wedge-shaped but fails to occur when the neural plate is separated from lateral nonneurepithelial tissues, even though MHP cells still become wedge-shaped and the midline neural plate still furrows. Together, these results suggest that neural fold elevation, rather than being driven by neurepithelial cell wedging, is driven, at least in part, by extrinsic forces generated by lateral nonneurepithelial tissues. However, it could be argued that in the absence of localized neurepithelial cell wedging, compensatory and atypical cell wedging occurred uniformly throughout the neural plate, providing forces adequate for neural fold elevation. Likewise, it could be argued that in the process of separating the neural plate from lateral nonneurepithelial tissues, the neural plate was damaged to the extent that the neural folds were unable to elevate. To investigate the validity of these arguments, we removed the following tissues microsurgically prior to neural fold elevation: MHP cells, varying amounts of lateral neurepithelial cells (L cells), and the tissues directly underlying these two populations of neurepithelial cells. We found that the neural folds still formed and underwent elevation, convergence, and fusion, resulting in an essentially normal neural tube, even though MHP cells, the underlying notochord, and some L cells were absent for long craniocaudal distances. These results demonstrate that microsurgery alone does not damage the neural plate sufficiently to prevent neural fold elevation, convergence, and fusion. Moreover, the fact that each of the two persisting remnants of lateral neurepithelium generally remained straight and consistently changed their orientation from horizontal to vertical rather than curling suggests very strongly that bending of the neural plate in these embryos is not the result of compensatory and atypical cell wedging. Finally, the results provide further direct evidence of extrinsic forces in bending because the two remnants of lateral neurepithelium, which were oriented horizontally at the time of tissue extirpation, could not have become oriented vertically in the absence of such forces.

Original languageEnglish (US)
Pages (from-to)225-236
Number of pages12
JournalJournal of Comparative Neurology
Volume307
Issue number2
StatePublished - 1991
Externally publishedYes

Fingerprint

Neural Plate
Neural Crest
Notochord
Neural Tube
Microsurgery

Keywords

  • chick embryo
  • mesoderm
  • neural folds
  • neural tube
  • neurepithelium neurulation
  • notochord
  • surface epithelium

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Further evidence of extrinsic forces in bending of the neural plate. / Smith, Jodi; Schoenwolf, G. C.

In: Journal of Comparative Neurology, Vol. 307, No. 2, 1991, p. 225-236.

Research output: Contribution to journalArticle

@article{a8a275d8dcc441a9b611429ea6961615,
title = "Further evidence of extrinsic forces in bending of the neural plate",
abstract = "Bending of the neural plate has long been considered to be driven by principally intrinsic forces generated by wedging of neurepithelial cells. Our previous studies have shown that during neural fold elevation, significant neurepithelial cell wedging occurs only within the median hinge point (MHP), the midline region of neural plate anchored to the notochord. We have also shown that neural fold elevation can still occur when MHP cells are prevented from becoming wedge-shaped but fails to occur when the neural plate is separated from lateral nonneurepithelial tissues, even though MHP cells still become wedge-shaped and the midline neural plate still furrows. Together, these results suggest that neural fold elevation, rather than being driven by neurepithelial cell wedging, is driven, at least in part, by extrinsic forces generated by lateral nonneurepithelial tissues. However, it could be argued that in the absence of localized neurepithelial cell wedging, compensatory and atypical cell wedging occurred uniformly throughout the neural plate, providing forces adequate for neural fold elevation. Likewise, it could be argued that in the process of separating the neural plate from lateral nonneurepithelial tissues, the neural plate was damaged to the extent that the neural folds were unable to elevate. To investigate the validity of these arguments, we removed the following tissues microsurgically prior to neural fold elevation: MHP cells, varying amounts of lateral neurepithelial cells (L cells), and the tissues directly underlying these two populations of neurepithelial cells. We found that the neural folds still formed and underwent elevation, convergence, and fusion, resulting in an essentially normal neural tube, even though MHP cells, the underlying notochord, and some L cells were absent for long craniocaudal distances. These results demonstrate that microsurgery alone does not damage the neural plate sufficiently to prevent neural fold elevation, convergence, and fusion. Moreover, the fact that each of the two persisting remnants of lateral neurepithelium generally remained straight and consistently changed their orientation from horizontal to vertical rather than curling suggests very strongly that bending of the neural plate in these embryos is not the result of compensatory and atypical cell wedging. Finally, the results provide further direct evidence of extrinsic forces in bending because the two remnants of lateral neurepithelium, which were oriented horizontally at the time of tissue extirpation, could not have become oriented vertically in the absence of such forces.",
keywords = "chick embryo, mesoderm, neural folds, neural tube, neurepithelium neurulation, notochord, surface epithelium",
author = "Jodi Smith and Schoenwolf, {G. C.}",
year = "1991",
language = "English (US)",
volume = "307",
pages = "225--236",
journal = "Journal of Comparative Neurology",
issn = "0021-9967",
publisher = "Wiley-Liss Inc.",
number = "2",

}

TY - JOUR

T1 - Further evidence of extrinsic forces in bending of the neural plate

AU - Smith, Jodi

AU - Schoenwolf, G. C.

PY - 1991

Y1 - 1991

N2 - Bending of the neural plate has long been considered to be driven by principally intrinsic forces generated by wedging of neurepithelial cells. Our previous studies have shown that during neural fold elevation, significant neurepithelial cell wedging occurs only within the median hinge point (MHP), the midline region of neural plate anchored to the notochord. We have also shown that neural fold elevation can still occur when MHP cells are prevented from becoming wedge-shaped but fails to occur when the neural plate is separated from lateral nonneurepithelial tissues, even though MHP cells still become wedge-shaped and the midline neural plate still furrows. Together, these results suggest that neural fold elevation, rather than being driven by neurepithelial cell wedging, is driven, at least in part, by extrinsic forces generated by lateral nonneurepithelial tissues. However, it could be argued that in the absence of localized neurepithelial cell wedging, compensatory and atypical cell wedging occurred uniformly throughout the neural plate, providing forces adequate for neural fold elevation. Likewise, it could be argued that in the process of separating the neural plate from lateral nonneurepithelial tissues, the neural plate was damaged to the extent that the neural folds were unable to elevate. To investigate the validity of these arguments, we removed the following tissues microsurgically prior to neural fold elevation: MHP cells, varying amounts of lateral neurepithelial cells (L cells), and the tissues directly underlying these two populations of neurepithelial cells. We found that the neural folds still formed and underwent elevation, convergence, and fusion, resulting in an essentially normal neural tube, even though MHP cells, the underlying notochord, and some L cells were absent for long craniocaudal distances. These results demonstrate that microsurgery alone does not damage the neural plate sufficiently to prevent neural fold elevation, convergence, and fusion. Moreover, the fact that each of the two persisting remnants of lateral neurepithelium generally remained straight and consistently changed their orientation from horizontal to vertical rather than curling suggests very strongly that bending of the neural plate in these embryos is not the result of compensatory and atypical cell wedging. Finally, the results provide further direct evidence of extrinsic forces in bending because the two remnants of lateral neurepithelium, which were oriented horizontally at the time of tissue extirpation, could not have become oriented vertically in the absence of such forces.

AB - Bending of the neural plate has long been considered to be driven by principally intrinsic forces generated by wedging of neurepithelial cells. Our previous studies have shown that during neural fold elevation, significant neurepithelial cell wedging occurs only within the median hinge point (MHP), the midline region of neural plate anchored to the notochord. We have also shown that neural fold elevation can still occur when MHP cells are prevented from becoming wedge-shaped but fails to occur when the neural plate is separated from lateral nonneurepithelial tissues, even though MHP cells still become wedge-shaped and the midline neural plate still furrows. Together, these results suggest that neural fold elevation, rather than being driven by neurepithelial cell wedging, is driven, at least in part, by extrinsic forces generated by lateral nonneurepithelial tissues. However, it could be argued that in the absence of localized neurepithelial cell wedging, compensatory and atypical cell wedging occurred uniformly throughout the neural plate, providing forces adequate for neural fold elevation. Likewise, it could be argued that in the process of separating the neural plate from lateral nonneurepithelial tissues, the neural plate was damaged to the extent that the neural folds were unable to elevate. To investigate the validity of these arguments, we removed the following tissues microsurgically prior to neural fold elevation: MHP cells, varying amounts of lateral neurepithelial cells (L cells), and the tissues directly underlying these two populations of neurepithelial cells. We found that the neural folds still formed and underwent elevation, convergence, and fusion, resulting in an essentially normal neural tube, even though MHP cells, the underlying notochord, and some L cells were absent for long craniocaudal distances. These results demonstrate that microsurgery alone does not damage the neural plate sufficiently to prevent neural fold elevation, convergence, and fusion. Moreover, the fact that each of the two persisting remnants of lateral neurepithelium generally remained straight and consistently changed their orientation from horizontal to vertical rather than curling suggests very strongly that bending of the neural plate in these embryos is not the result of compensatory and atypical cell wedging. Finally, the results provide further direct evidence of extrinsic forces in bending because the two remnants of lateral neurepithelium, which were oriented horizontally at the time of tissue extirpation, could not have become oriented vertically in the absence of such forces.

KW - chick embryo

KW - mesoderm

KW - neural folds

KW - neural tube

KW - neurepithelium neurulation

KW - notochord

KW - surface epithelium

UR - http://www.scopus.com/inward/record.url?scp=0025906836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025906836&partnerID=8YFLogxK

M3 - Article

C2 - 1856324

AN - SCOPUS:0025906836

VL - 307

SP - 225

EP - 236

JO - Journal of Comparative Neurology

JF - Journal of Comparative Neurology

SN - 0021-9967

IS - 2

ER -