Genetic microheterogeneity of human transthyretin detected by IEF

Klaus Altland, Merrill D. Benson, Catherine E. Costello, Alessandra Ferlini, Bouke P.C. Hazenberg, Ernst Hund, Arnt V. Kristen, Reinhold P. Linke, Giampaolo Merlini, Fabrizio Salvi, Maria J. Saraiva, Reinhard Singer, Martha Skinner, Pia Winter

Research output: Contribution to journalArticle

26 Scopus citations

Abstract

Mutations of the human transthyretin (TTR) gene have attracted medical interest as a cause of amyloidosis. Recently, we have described in detail an electrophoretic procedure with PAGE followed by IEF in urea gradients for the study of the microheterogeneity of TTR monomers (Altland, K., Winter, P., Sauerborn, M. K., Electrophoresis 1999,20, 1349-1364). In this paper, we present a study on 49 different mutations of TTR including 33 that result in electrically neutral amino acid substitutions. The aims of the investigation were to test the sensitivity of the procedure to detect TTR variants in patients with TTR amyloidosis and their relatives and to identify some common characteristics that could explain the amyloidogenicity of these variants. We found that all tested amyloidogenic mutations could be detected by our method with the exception of those for which the corresponding variant was absent in plasma samples. Most of the electrically neutral amyloidogenic TTR variants had in common a reduced conformational stability of monomers by the activity of protons and urea. For three variants, e.g. TTR-F64L, TTR-I107V and TTR-V122I, the monomers had a conformational stability close to that of normal monomers but we found experimental and structural arguments for a weakening of the monomer-monomer contact. All types of amyloidogenic mutations affected the stability of TTR tetramers.

Original languageEnglish (US)
Pages (from-to)2053-2064
Number of pages12
JournalELECTROPHORESIS
Volume28
Issue number12
DOIs
StatePublished - Jun 1 2007

Keywords

  • Amyloidosis
  • Familial amyloidotic polyneuropathy
  • Microheterogeneity
  • Transthyretin
  • Urea titration curve

ASJC Scopus subject areas

  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'Genetic microheterogeneity of human transthyretin detected by IEF'. Together they form a unique fingerprint.

  • Cite this

    Altland, K., Benson, M. D., Costello, C. E., Ferlini, A., Hazenberg, B. P. C., Hund, E., Kristen, A. V., Linke, R. P., Merlini, G., Salvi, F., Saraiva, M. J., Singer, R., Skinner, M., & Winter, P. (2007). Genetic microheterogeneity of human transthyretin detected by IEF. ELECTROPHORESIS, 28(12), 2053-2064. https://doi.org/10.1002/elps.200600840