High residual C-peptide likely contributes to glycemic control in type 1 diabetes

T1D Exchange β-Cell Function Study Group

Research output: Contribution to journalArticle

5 Scopus citations


BACKGROUND. Residual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not known. METHODS. We studied 63 adults with type 1 diabetes classified by peak mixed-meal tolerance test (MMTT) C-peptide as negative (<0.007 pmol/mL; n = 15), low (0.017-0.200; n = 16), intermediate (>0.200-0.400; n = 15), or high (>0.400; n = 17). We compared the groups' glycemia from continuous glucose monitoring (CGM), β cell secretory responses from a glucose-potentiated arginine (GPA) test, insulin sensitivity from a hyperinsulinemic-euglycemic (EU) clamp, and glucose counterregulatory responses from a subsequent hypoglycemic (HYPO) clamp. RESULTS. Low and intermediate MMTT C-peptide groups did not exhibit β cell secretory responses to hyperglycemia, whereas the high C-peptide group showed increases in both C-peptide and proinsulin (P ≤ 0.01). All groups with detectable MMTT C-peptide demonstrated acute C-peptide and proinsulin responses to arginine that were positively correlated with peak MMTT C-peptide (P < 0.0001 for both analytes). During the EU-HYPO clamp, C-peptide levels were proportionately suppressed in the low, intermediate, and high C-peptide compared with the negative group (P ≤ 0.0001), whereas glucagon increased from EU to HYPO only in the high C-peptide group compared with negative (P = 0.01). CGM demonstrated lower mean glucose and more time in range for the high C-peptide group. CONCLUSION. These results indicate that in adults with type 1 diabetes, β cell responsiveness to hyperglycemia and α cell responsiveness to hypoglycemia are observed only at high levels of residual C-peptide that likely contribute to glycemic control. FUNDING. Funding for this work was provided by the Leona M. and Harry B. Helmsley Charitable Trust, the National Center for Advancing Translational Sciences, and the National Institute of Diabetes and Digestive and Kidney Diseases.

Original languageEnglish (US)
Pages (from-to)1850-1862
Number of pages13
JournalJournal of Clinical Investigation
Issue number4
StatePublished - Apr 1 2020

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'High residual C-peptide likely contributes to glycemic control in type 1 diabetes'. Together they form a unique fingerprint.

  • Cite this