High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO

Jie Hui, Qianhuan Yu, Teng Ma, Pu Wang, Yingchun Cao, Rebecca S. Bruning, Yueqiao Qu, Zhongping Chen, Qifa Zhou, Michael Sturek, Ji Xin Cheng, Weibiao Chen

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Lipid deposition inside the arterial wall is a hallmark of plaque vulnerability. Based on overtone absorption of C-H bonds, intravascular photoacoustic (IVPA) catheter is a promising technology for quantifying the amount of lipid and its spatial distribution inside the arterial wall. Thus far, the clinical translation of IVPA technology is limited by its slow imaging speed due to lack of a high-pulse-energy high-repetition-rate laser source for lipid-specific first overtone excitation at 1.7 μm. Here, we demonstrate a potassium titanyl phosphate (KTP)-based optical parametric oscillator with output pulse energy up to 2 mJ at a wavelength of 1724 nm and with a repetition rate of 500 Hz. Using this laser and a ring-shape transducer, IVPA imaging at speed of 1 frame per sec was demonstrated. Performance of the IVPA imaging system’s resolution, sensitivity, and specificity were characterized by carbon fiber and a lipid-mimicking phantom. The clinical utility of this technology was further evaluated ex vivo in an excised atherosclerotic human femoral artery with comparison to histology.

Original languageEnglish (US)
Article number250606
Pages (from-to)4557-4566
Number of pages10
JournalBiomedical Optics Express
Volume6
Issue number11
DOIs
StatePublished - Oct 23 2015

Keywords

  • Clinical applications
  • Imaging systems
  • Lasers
  • Photoacoustic imaging
  • Photoacoustics

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'High-speed intravascular photoacoustic imaging at 1.7 μm with a KTP-based OPO'. Together they form a unique fingerprint.

Cite this