High throughput sequential ELISA for validation of biomarkers of acute graft-versus-host disease.

Bryan Fiema, Andrew C. Harris, Aurelie Gomez, Praechompoo Pongtornpipat, Kelly Lamiman, Mark T. Vander Lugt, Sophie Paczesny

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

Unbiased discovery proteomics strategies have the potential to identify large numbers of novel biomarkers that can improve diagnostic and prognostic testing in a clinical setting and may help guide therapeutic interventions. When large numbers of candidate proteins are identified, it may be difficult to validate candidate biomarkers in a timely and efficient fashion from patient plasma samples that are event-driven, of finite volume and irreplaceable, such as at the onset of acute graft-versus-host disease (GVHD), a potentially life-threatening complication of allogeneic hematopoietic stem cell transplantation (HSCT). Here we describe the process of performing commercially available ELISAs for six validated GVHD proteins: IL-2Rα(5), TNFR1(6), HGF(7), IL-8(8), elafin(2), and REG3α(3) (also known as PAP1) in a sequential fashion to minimize freeze-thaw cycles, thawed plasma time and plasma usage. For this procedure we perform the ELISAs in sequential order as determined by sample dilution factor as established in our laboratory using manufacturer ELISA kits and protocols with minor adjustments to facilitate optimal sequential ELISA performance. The resulting plasma biomarker concentrations can then be compiled and analyzed for significant findings within a patient cohort. While these biomarkers are currently for research purposes only, their incorporation into clinical care is currently being investigated in clinical trials. This technique can be applied to perform ELISAs for multiple proteins/cytokines of interest on the same sample(s) provided the samples do not need to be mixed with other reagents. If ELISA kits do not come with pre-coated plates, 96-well half-well plates or 384-well plates can be used to further minimize use of samples/reagents.

Original languageEnglish (US)
JournalJournal of visualized experiments : JoVE
Issue number68
StatePublished - 2012
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)
  • Chemical Engineering(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'High throughput sequential ELISA for validation of biomarkers of acute graft-versus-host disease.'. Together they form a unique fingerprint.

  • Cite this

    Fiema, B., Harris, A. C., Gomez, A., Pongtornpipat, P., Lamiman, K., Vander Lugt, M. T., & Paczesny, S. (2012). High throughput sequential ELISA for validation of biomarkers of acute graft-versus-host disease. Journal of visualized experiments : JoVE, (68).