Hydroxyapatite implants with designed internal architecture

T. M.G. Chu, J. W. Halloran, S. J. Hollister, S. E. Feinberg

Research output: Contribution to journalArticle

226 Scopus citations

Abstract

Porous hydroxyapatite (HA) has been used as a bone graft material in the clinics for decades. Traditionally, the pores in these HAs are either obtained from the coralline exoskeletal patterns or from the embedded organic particles in the starting HA powder. Both processes offer very limited control on the pore structure. A new method for manufacturing porous HA with designed pore channels has been developed. This method is essentially a lost-mold technique with negative molds made with Stereolithography and a highly loaded curable HA suspension as the ceramic carrier. Implants with designed channels and connection patterns were first generated from a Computer-Aided-Design (CAD) software and Computer Tomography (CT) data. The negative images of the designs were used to build the molds on a stereolithography apparatus with epoxy resins. A 40 vol% HA suspension in propoxylated neopentyl glycol diacrylate (PNPGDA) and iso-bornyl acrylate (IBA) was formulated. HA suspension was cast into the epoxy molds and cured into solid at 85°C. The molds and acrylate binders were removed by pyrolysis, followed by HA green body sintering. With this method, implants with six different channel designs were built successfully and the designed channels were reproduced in the sintered HA implants. The channels created in the sintered HA implants were between 366 μm and 968 μm in diameter with standard deviations of 50 μm or less. The porosity created by the channels were between 26% and 52%. The results show that HA implants with designed connection pattern and well controled channel size can be built with the technique developed in this study.

Original languageEnglish (US)
Pages (from-to)471-478
Number of pages8
JournalJournal of Materials Science: Materials in Medicine
Volume12
Issue number6
DOIs
StatePublished - Jul 16 2001
Externally publishedYes

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint Dive into the research topics of 'Hydroxyapatite implants with designed internal architecture'. Together they form a unique fingerprint.

  • Cite this