Identifying and genotyping transgene integration loci

Zhong Liang, Amy Marie Breman, Brenda R. Grimes, Elliot D. Rosen

Research output: Contribution to journalArticle

16 Scopus citations


The random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers. Furthermore, founder lines generated with the same transgene construct may exhibit different phenotypes and levels of transgene expression depending on the site of integration. The goal of this report was to develop a rapid protocol for the identification and verification of transgene insertion sites. To identify host genomic sequences at the coagulation Factor X transgene integration site, DNA from a tail snip of the transgenic mouse was digested with NcoI and circularized using T4 DNA ligase. Using appropriately positioned PCR primers annealing to a transgene fragment distal to a terminal transgene restriction site (NcoI), one could amplify a fragment containing the transgene terminal region and extending into the flanking genomic sequence at the insertion site. DNA sequence determination of the amplicon permitted identification of the insertion site using a BLASTN search. FISH analysis of a metaphase spread of primary fibroblasts derived from the transgenic mouse was consistent with the identification of insertion site near the end of mouse chromosome 14. Identification of transgene insertion sites will facilitate genotyping strategies useful for the construction of mice with multiple engineered genetic markers and to distinguish among different founder lines generated by the same transgene. Furthermore, identification of the insertion site is necessary to analyze unexpected phenotypes that might be caused by insertional inactivation of an endogenous gene.

Original languageEnglish (US)
Pages (from-to)979-983
Number of pages5
JournalTransgenic Research
Issue number5
StatePublished - Oct 1 2008


  • Factor X
  • FISH
  • Genotyping
  • Insertion site
  • Inverse PCR
  • Transgene

ASJC Scopus subject areas

  • Genetics
  • Plant Science
  • Applied Microbiology and Biotechnology
  • Molecular Biology
  • Biotechnology
  • Food Science

Fingerprint Dive into the research topics of 'Identifying and genotyping transgene integration loci'. Together they form a unique fingerprint.

Cite this